企业大数据规划先做好小数据分析
目前国内外关于大数据的谈论很多,大多是谈运营级别的,或者说从服务端、服务方提得较多一些。笔者要跟大家交流的问题是作为各类企业尤其是客户方的企业来说,大数据跟他们有什么关系,或者说作为企业方怎样去参与,这是企业方现在面临的最大问题。
这个问题的答案重点在于大数据应该从小数据开始。因为现在很多企业面临的最大问题不是怎么用大数据,而是内部的一些小数据整合出现问题,或者小数据都没用好的情况下怎么用大数据。大数据应该是从小数据逐渐演变上去的,是一个正常的生态,而不是瞬间变化的。大数据这个概念跟自媒体的概念类似,需要企业自己去建设,而不是从一开始就想着依靠别人。很多企业在谈自媒体的时候,像谈别人的事情一样。比如一谈自媒体,就觉得那是第三方提供的一个平台,大家在那儿发发牢骚。自媒体是自己的媒体,企业自己也要参与进去。同样大数据不是别人的大数据,我们假设有一个第三方提供了大量的数据,有很多很多信息,CI、BI之类的很多模块化东西供我们来用。如果这样的话,你有,竞争对手也有,你能得到的东西,竞争对手也能得到的情况下,就不能称之为核心竞争力。大数据作为企业来说要变成自身的一个竞争力,企业必须得建立自己的企业级的数据。
要做大数据,首先要了解自己的企业,或者自己所在的行业的核心是什么。我们现在经常发现,有很多企业在竞争的过程中,最终不是被现在的竞争对手打败,而是被很多不是你的竞争对手所打败。很简单的一个例子,大家都认为亚马逊是做电商的,但这是错的,它现在最主要的收入来自于云(云服务)。也就是说企业需要找到自己的核心数据(价值),这个是最关键的。只有在这个基础上,建立自己的大数据才有可能,才能做一些延伸。其次,要找到内部的一些外围相关数据,去慢慢地成长它。有点像滚雪球,第一层是核心,第二层是外围相关的数据。第三层是什么?就是外部机构的一些结构化数据。第四层是社会化的,以及各种现在所谓的非结构化的数据。这几层要一层一层地找到它,而且要找到与自己相关的有价值的东西。这样你的大数据才能建立起来。
第一步,找到核心数据。核心数据现在对很多企业来说实际上就是CRM,自己的用户系统,这是最重要的。
第二步,外围数据。比如企业经常会在线上线下举办一些活动,在做活动的时候,消费者的信息只是简单地提供在表单里面,还是进入了CRM的系统里?
第三步,常规渠道的数据。举例来说一个销售快销品的企业,能不能够得到沃尔玛的数据,家乐福的数据?很多国外大数据的案例,说消费者买啤酒的时候也会购买剃须刀之类,或者一个母婴产品的消费者她今天在买这个产品,预示着她后面必然会买另一个产品。这就有一个前期的挖掘。这些价值怎么来的,这就需要企业去找常规渠道里面的数据,跟自己的CRM结合起来,才能为自己下一步做市场营销、做推广、产品创新等建立基础。
第四步,外部的社会化的或者非结构化的数据,即现在所谓的社会化媒体数据。这方面信息的主要特征是非结构化,而且非常庞大。这对企业来说最大的价值是什么?当你的用户在社会化媒体上发言的时候,你有没有跟他建立联系?这里有个概念叫做DC(digital connection)。所谓的互联网实际就是一种DC,但是通常互联网上的那种DC是在娱乐层面。用到商业里面的话,就是企业必须得跟消费者建立这种DC关系,它的价值才能发挥出来。否则,你的数据以及很多的CRM数据都是死的。就像国外CRM之父Paul Greenberg写的四本CRM相关书籍,前面三本都是在讲数据库、系统之类的。第四本书的时候,就没有再讲那些东西,讲什么?讲互动,讲DC,讲怎么跟消费者建立关系。
有了这个数据库去进行数据挖掘,或者在建立数据的过程中,企业需要从什么方向去探索,也不是漫无目的的。首先应该跟着你的业务,业务现在有哪些问题,或者说这个行业里面主要的竞争点在哪里,这是很关键的。有了这个业务关系以后,再形成假设,也就是说未来的竞争点可能在哪里,大到未来的战略竞争,小到哪些方面。然后下一步要怎么做,这些形成一个假设,其次做一些小样本的测试。很多企业一看大数据就很恐怖,说我也买不起那些大数据,也雇不起那么专业的团队,怎么办?自己做一些小样本的测试,甚至通过电子表格Excel都可以做数据挖掘。不一定非要那么庞大、那么贵的数据。然后再做大样本的验证,验证出来的结果就可以应用到现实中去。
在大数据尤其是互联网时代还有一个最重要的点,就是失效预警。即你发现一个规律,在现实中应用了,但是你一定要设立一些预警指标。就是当指标达到什么程度的时候,之前发现的规律失效,那你就必须发现新的、相关的,否则也会造成一种浪费。笔者看到一篇文章,其中有一个重要结论。大家都在说大数据的价值很有用的时候,很多企业说我积累了多少TB,多少PB,但是你基于老的数据得出的很多结论实际是在浪费你的资源。你挖掘出来很多数据、很多规律,如果错了,明天按这个去做,就是浪费。因此需要有一个失效预警。在这样的过程中,最终你需要对应建立起内部团队,他们对数据的敏感度也才能培养起来。这时候你再去买大数据服务的时候才是有价值的。
所有这些工作作为企业来说是需要内部去做的,最终才能开花结果,有一些收获。企业大数据起步,要从小数据开始。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09