SPSS生存函数-Kaplan-Meier
一、Kaplan-Meier生存分析(分析-生存函数-Kaplan-Meier)
1、概念:在多数情况下,您都会希望考察两个事件之间的时间分布,比如雇用时长(员工从雇用到离开公司的时间)。但是,这种数据通常包含一些已审查的个案。已审查的个案是没有记录其第二次事件的个案(例如,在调查结束后仍然为公司工作的员工)。Kaplan-Meier过程是已审查的个案出现时估计时间事件模型的一种方法。Kaplan-Meier模型的依据是估计事件发生的每个时间点的条件概率,并取这些概率的乘积限估计每个时间点的生存率。
2、示例。新的AIDS疗法在延长寿命方面是否具有治疗优势?您可以对两组AIDS患者进行研究,一组接受传统疗法,另一组接受实验性疗法。从数据构造Kaplan-Meier模型将允许您比较两组的整体生存率,以确定实验性疗法是否是传统疗法的改进。还可以用图来表示生存或风险函数并对其进行直观比较,以获得更详细的信息。
3、统计量。生存表,包括时间、状态、累积生存和标准误、累积事件和剩余数;以及均值和中位数生存时间,带有标准误和95%置信区间。图:生存、风险、对数生存和1减生存。
4、数据。时间变量应为连续变量,状态变量可以是分类变量或连续变量,因子和层次变量应为分类变量。
5、假设。所关心事件的概率应只取决于初始事件之后的时间(假设绝对时间下的概率不变)。即,从不同时间开始研究的个案(比如,从不同时间开始接受治疗的患者)应有相似的行为。已审查的个案和未审查的个案之间也不应存在系统性差别。例如,如果许多已审查的个案都是情况更为严重的患者,则得到的结果可能会存在偏差。
6、相关过程。Kaplan-Meier过程使用的计算寿命表的方法估计每个事件发生时的生存或风险函数。“寿命表”过程使用保险精算方法进行生存分析,该方法依赖于将观察期划分为较小的时间区间,可能对处理大样本有用。如果您怀疑变量与要控制的生存时间或变量(协变量)相关,则应使用“Cox回归”过程。如果同一个个案中协变量在不同的时间点可以具有不同的值,则应使用带有“依时协变量”的“Cox回归”。
二、比较因子水平(分析-生存函数-Kaplan-Meie-比较因子)
您可以请求统计量以检验因子不同水平的生存分布的等同性。可用统计量包括对数秩、Breslow和Tarone-Ware。选择一个选项指定要进行的比较:跨层整体检验、分层检验、跨层成对检验或分层成对检验。◎对数秩.比较生存分布的等同性的检验。在此检验中,所有时间点均赋予相同的权重。◎Breslow.比较生存分布的等同性的检验。在每个时间点用带风险的个案数对时间点加权。◎Tarone-Ware.比较生存分布的等同性的检验。在每个时间点用历险的个案数的平方根对时间点加权。◎在层上比较所有因子水平.在单次检验中比较所有因子水平,以检验生存曲线的相等性。◎在层上成对比较因子水平.比较每一个相异的因子水平对。不提供成对趋势检验。◎对于每层.对每层的所有因子水平的相等性执行一次单独的检验。如果您没有分层变量,则不执行检验。◎为每层成对比较因子水平.比较每一层的每一个相异的因子水平对。不提供成对趋势检验。如果您没有分层变量,则不执行检验。
因子级别的线性趋势。允许您检验跨因子级别的线性趋势。此选项仅可用于因子水平的整体(而不是成对)比较。
三、保存(分析-生存函数-Kaplan-Meie-保存)
您可以将Kaplan-Meier表的信息保存为新变量,新变量可在以后的分析中用于检验假设或检查假设。您可以将生存函数、生存函数的标准误、危险函数和累积事件保存为新变量。◎生存.累积生存概率估计。默认变量名为前缀sur_加上顺序号。例如,如果已存在sur_1,Kaplan-Meier就分配变量名sur_2。◎生存函数的标准误.累积生存估计的标准误。默认变量名为前缀se_加上顺序号。例如,如果已存在se_1,Kaplan-Meier就分配变量名se_2。◎危险函数.累积风险函数估计。默认变量名为前缀haz_加上顺序号。例如,如果已存在haz_1,Kaplan-Meier就分配变量名haz_2。◎累积事件.当个案按其生存时间和状态代码进行排序时的事件累积频率。默认变量名为前缀cum_加上顺序号。例如,如果已存在cum_1,Kaplan-Meier就分配变量名cum_2
四、选项(分析-生存函数-Kaplan-Meie-选项)
1、统计量。您可以选择为计算的生存函数显示统计量,包括生存分析表、均值和中位数生存时间以及四分位数。如果包含因子变量,则会为每组生成单独的统计量。
通过图可以直观地检查生存函数、1减去生存函数、危险函数和取生存函数的对数。如果包含因子变量,则会为每组绘制函数图。◎生存.在线性刻度上显示累积生存函数。◎1减去生存函数.以线性尺度绘制1减生存函数。◎危险函数.在线性刻度上显示累积风险函数。◎取生存函数的对数.在对数刻度上显示累积生存函数。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20