企业数据分析该从何处下手
大数据的到来提升了数据的高度,企业第一次有条件在深层次获得并使用全面的数据。数据的大规模应用正改变着企业的运营管理方式,加之市场的快速变化,企业也越来越认识到数据分析应用的重要性。
但是,数据平台的搭建、数据分析应用的全面推行是一项艰巨的任务。如何搭建、如何选型、如何运维、如何说服领导层融入管理,以下以某国企单位的案例做简单介绍。
信息化建设情况
该企业的信息化从1999年开始起步,逐渐变成结算、融资系统 、银行系统。从06年开始实现了HR系统,新机房开始建成 ,近几年有又做了数据中心、虚拟化以及集成整合, 14年携手帆软正式合作,逐步向移动端发展。
以上是企业信息化发展的蓝图,行业统一平台是对决策管理系统的继承、完善和发展,是实线行业数据交换、信息共享的基础平台,也是承载各类行业性应用、实线两级建设主体有效集成协同共享的行业信息化基础平台。行业统一平台由云环境、传输环境、集成环境和数据环境四个部分组成。企业拥有五大保障体系,由信息化决策、架构与标准、建设与实施、运维与服务、网络安全这五个部分组成,为行业信息化建设、管理和应用提供全方位的保障。
数据分析项目实施背景
在实施之前,该企业在数据方面已经拥有一套完整的规划,包括最底层的数据远程、数据交换层、数据加工层、数据业务层。但是在实际运用的时候,发现存在非常大的缺点。
1、数据中心、数据集市由于自身因素,往往依托第三方运维管理或者由上级单位管理,当业务模式变动对数据中心产生调整需求时,往往应较慢、费用高、不好驾驭。
2、业务部门更改报表频率极高,而通过更改数据中心、数据仓库(增减数据)操作复杂度较高,流程繁琐。
3、数据中心、仓库、集市,处理数据需要较长时间,决策层需要实时数据监控,同时结合历史数据分析、关键核心业务部门需求需要信息部门快速满足。
在此之前,该企业也思考了很多办法,即使解决了以上问题,决策层仍受限,也缺少移动端的支持。
后来针对以上问题,我们从3个层面进行了分析。
1、决策层:
综合性底:缺少一套全面综合地反映企业经营动态、各业务领域及单位的运行状况综合系统。
实时性差:通过传统数据汇总传递方式存在严重的滞后性,决策层无法及时监控企业运行数据。
可用性不强:传统纸质报表数据量大、数据分散,给决策层准确把握企业、市场运行状态带来了困难。
2、业务层:
共享程度不高:跨部门的数据传递,分享困难,无法及时方便的互通专卖、营销、市场信息数据。
数据加工工作量大:业务部门日常需要处理大量、繁琐的数据汇总加工,耗费大量人员精力。并且难以多角度、深层次分析业务问题原因
3、信息层:
数据分散:各业务系统数据多、分布散,之间都存在着“数据孤岛”,分散的数据无法对指挥调度提供信息支撑。
管控难度大:个系统集成商开发之间各自为战,系统数据口径不一致、对数据统一管控带来不便。
业务需求增多:随着业务部门考核、调度、分析不断变动,信息部门通过传统的业务报表制作难以适应业务变化的节奏。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20