python数据结构之二叉树的统计与转换实例
这篇文章主要介绍了python数据结构之二叉树的统计与转换实例,例如统计二叉树的叶子、分支节点,以及二叉树的左右两树互换等,需要的朋友可以参考下
一、获取二叉树的深度
就是二叉树最后的层次,如下图:
实现代码:
代码如下:
def getheight(self):
''' 获取二叉树深度 '''
return self.__get_tree_height(self.root)
def __get_tree_height(self, root):
if root is 0:
return 0
if root.left is 0 and root.right is 0:
return 1
else:
left = self.__get_tree_height(root.left)
right = self.__get_tree_height(root.right)
if left < right:
return right + 1
else:
return left + 1
二、叶子的统计
叶子就是二叉树的节点的 left 指针和 right 指针分别指向空的节点
复制代码 代码如下:
def getleafcount(self):
''' 获取二叉树叶子数 '''
return self.__count_leaf_node(self.root)
def __count_leaf_node(self, root):
res = 0
if root is 0:
return res
if root.left is 0 and root.right is 0:
res += 1
return res
if root.left is not 0:
res += self.__count_leaf_node(root.left)
if root.right is not 0:
res += self.__count_leaf_node(root.right)
return res
三、统计叶子的分支节点
与叶子节点相对的其他节点 left 和 right 的指针指向其他节点
复制代码 代码如下:
def getbranchcount(self):
''' 获取二叉树分支节点数 '''
return self.__get_branch_node(self.root)
def __get_branch_node(self, root):
if root is 0:
return 0
if root.left is 0 and root.right is 0:
return 0
else:
return 1 + self.__get_branch_node(root.left) + self.__get_branch_node(root.right)
四、二叉树左右树互换
代码如下:
def replacelem(self):
''' 二叉树所有结点的左右子树相互交换 '''
self.__replace_element(self.root)
def __replace_element(self, root):
if root is 0:
return
root.left, root.right = root.right, root.left
self.__replace_element(root.left)
self.__replace_element(root.right)
这些方法和操作,都是运用递归。其实二叉树的定义也是一种递归。附上最后的完整代码:
代码如下:
# -*- coding: utf - 8 - *-
class TreeNode(object):
def __init__(self, left=0, right=0, data=0):
self.left = left
self.right = right
self.data = data
class BinaryTree(object):
def __init__(self, root=0):
self.root = root
def is_empty(self):
if self.root is 0:
return True
else:
return False
def create(self):
temp = input('enter a value:')
if temp is '#':
return 0
treenode = TreeNode(data=temp)
if self.root is 0:
self.root = treenode
treenode.left = self.create()
treenode.right = self.create()
def preorder(self, treenode):
'前序(pre-order,NLR)遍历'
if treenode is 0:
return
print treenode.data
self.preorder(treenode.left)
self.preorder(treenode.right)
def inorder(self, treenode):
'中序(in-order,LNR'
if treenode is 0:
return
self.inorder(treenode.left)
print treenode.data
self.inorder(treenode.right)
def postorder(self, treenode):
'后序(post-order,LRN)遍历'
if treenode is 0:
return
self.postorder(treenode.left)
self.postorder(treenode.right)
print treenode.data
def preorders(self, treenode):
'前序(pre-order,NLR)非递归遍历'
stack = []
while treenode or stack:
if treenode is not 0:
print treenode.data
stack.append(treenode)
treenode = treenode.left
else:
treenode = stack.pop()
treenode = treenode.right
def inorders(self, treenode):
'中序(in-order,LNR) 非递归遍历'
stack = []
while treenode or stack:
if treenode:
stack.append(treenode)
treenode = treenode.left
else:
treenode = stack.pop()
print treenode.data
treenode = treenode.right
def postorders(self, treenode):
'后序(post-order,LRN)非递归遍历'
stack = []
pre = 0
while treenode or stack:
if treenode:
stack.append(treenode)
treenode = treenode.left
elif stack[-1].right != pre:
treenode = stack[-1].right
pre = 0
else:
pre = stack.pop()
print pre.data
# def postorders(self, treenode):
# '后序(post-order,LRN)非递归遍历'
# stack = []
# queue = []
# queue.append(treenode)
# while queue:
# treenode = queue.pop()
# if treenode.left:
# queue.append(treenode.left)
# if treenode.right:
# queue.append(treenode.right)
# stack.append(treenode)
# while stack:
# print stack.pop().data
def levelorders(self, treenode):
'层序(post-order,LRN)非递归遍历'
from collections import deque
if not treenode:
return
q = deque([treenode])
while q:
treenode = q.popleft()
print treenode.data
if treenode.left:
q.append(treenode.left)
if treenode.right:
q.append(treenode.right)
def getheight(self):
''' 获取二叉树深度 '''
return self.__get_tree_height(self.root)
def __get_tree_height(self, root):
if root is 0:
return 0
if root.left is 0 and root.right is 0:
return 1
else:
left = self.__get_tree_height(root.left)
right = self.__get_tree_height(root.right)
if left < right:
return right + 1
else:
return left + 1
def getleafcount(self):
''' 获取二叉树叶子数 '''
return self.__count_leaf_node(self.root)
def __count_leaf_node(self, root):
res = 0
if root is 0:
return res
if root.left is 0 and root.right is 0:
res += 1
return res
if root.left is not 0:
res += self.__count_leaf_node(root.left)
if root.right is not 0:
res += self.__count_leaf_node(root.right)
return res
def getbranchcount(self):
''' 获取二叉树分支节点数 '''
return self.__get_branch_node(self.root)
def __get_branch_node(self, root):
if root is 0:
return 0
if root.left is 0 and root.right is 0:
return 0
else:
return 1 + self.__get_branch_node(root.left) + self.__get_branch_node(root.right)
def replacelem(self):
''' 二叉树所有结点的左右子树相互交换 '''
self.__replace_element(self.root)
def __replace_element(self, root):
if root is 0:
return
root.left, root.right = root.right, root.left
self.__replace_element(root.left)
self.__replace_element(root.right)
node1 = TreeNode(data=1)
node2 = TreeNode(node1, 0, 2)
node3 = TreeNode(data=3)
node4 = TreeNode(data=4)
node5 = TreeNode(node3, node4, 5)
node6 = TreeNode(node2, node5, 6)
node7 = TreeNode(node6, 0, 7)
node8 = TreeNode(data=8)
root = TreeNode(node7, node8, 'root')
bt = BinaryTree(root)
print u'''
生成的二叉树
------------------------
root
7 8
6
2 5
1 3 4
-------------------------
'''
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27