python数据结构之二叉树的统计与转换实例
这篇文章主要介绍了python数据结构之二叉树的统计与转换实例,例如统计二叉树的叶子、分支节点,以及二叉树的左右两树互换等,需要的朋友可以参考下
一、获取二叉树的深度
就是二叉树最后的层次,如下图:
实现代码:
代码如下:
def getheight(self):
''' 获取二叉树深度 '''
return self.__get_tree_height(self.root)
def __get_tree_height(self, root):
if root is 0:
return 0
if root.left is 0 and root.right is 0:
return 1
else:
left = self.__get_tree_height(root.left)
right = self.__get_tree_height(root.right)
if left < right:
return right + 1
else:
return left + 1
二、叶子的统计
叶子就是二叉树的节点的 left 指针和 right 指针分别指向空的节点
复制代码 代码如下:
def getleafcount(self):
''' 获取二叉树叶子数 '''
return self.__count_leaf_node(self.root)
def __count_leaf_node(self, root):
res = 0
if root is 0:
return res
if root.left is 0 and root.right is 0:
res += 1
return res
if root.left is not 0:
res += self.__count_leaf_node(root.left)
if root.right is not 0:
res += self.__count_leaf_node(root.right)
return res
三、统计叶子的分支节点
与叶子节点相对的其他节点 left 和 right 的指针指向其他节点
复制代码 代码如下:
def getbranchcount(self):
''' 获取二叉树分支节点数 '''
return self.__get_branch_node(self.root)
def __get_branch_node(self, root):
if root is 0:
return 0
if root.left is 0 and root.right is 0:
return 0
else:
return 1 + self.__get_branch_node(root.left) + self.__get_branch_node(root.right)
四、二叉树左右树互换
代码如下:
def replacelem(self):
''' 二叉树所有结点的左右子树相互交换 '''
self.__replace_element(self.root)
def __replace_element(self, root):
if root is 0:
return
root.left, root.right = root.right, root.left
self.__replace_element(root.left)
self.__replace_element(root.right)
这些方法和操作,都是运用递归。其实二叉树的定义也是一种递归。附上最后的完整代码:
代码如下:
# -*- coding: utf - 8 - *-
class TreeNode(object):
def __init__(self, left=0, right=0, data=0):
self.left = left
self.right = right
self.data = data
class BinaryTree(object):
def __init__(self, root=0):
self.root = root
def is_empty(self):
if self.root is 0:
return True
else:
return False
def create(self):
temp = input('enter a value:')
if temp is '#':
return 0
treenode = TreeNode(data=temp)
if self.root is 0:
self.root = treenode
treenode.left = self.create()
treenode.right = self.create()
def preorder(self, treenode):
'前序(pre-order,NLR)遍历'
if treenode is 0:
return
print treenode.data
self.preorder(treenode.left)
self.preorder(treenode.right)
def inorder(self, treenode):
'中序(in-order,LNR'
if treenode is 0:
return
self.inorder(treenode.left)
print treenode.data
self.inorder(treenode.right)
def postorder(self, treenode):
'后序(post-order,LRN)遍历'
if treenode is 0:
return
self.postorder(treenode.left)
self.postorder(treenode.right)
print treenode.data
def preorders(self, treenode):
'前序(pre-order,NLR)非递归遍历'
stack = []
while treenode or stack:
if treenode is not 0:
print treenode.data
stack.append(treenode)
treenode = treenode.left
else:
treenode = stack.pop()
treenode = treenode.right
def inorders(self, treenode):
'中序(in-order,LNR) 非递归遍历'
stack = []
while treenode or stack:
if treenode:
stack.append(treenode)
treenode = treenode.left
else:
treenode = stack.pop()
print treenode.data
treenode = treenode.right
def postorders(self, treenode):
'后序(post-order,LRN)非递归遍历'
stack = []
pre = 0
while treenode or stack:
if treenode:
stack.append(treenode)
treenode = treenode.left
elif stack[-1].right != pre:
treenode = stack[-1].right
pre = 0
else:
pre = stack.pop()
print pre.data
# def postorders(self, treenode):
# '后序(post-order,LRN)非递归遍历'
# stack = []
# queue = []
# queue.append(treenode)
# while queue:
# treenode = queue.pop()
# if treenode.left:
# queue.append(treenode.left)
# if treenode.right:
# queue.append(treenode.right)
# stack.append(treenode)
# while stack:
# print stack.pop().data
def levelorders(self, treenode):
'层序(post-order,LRN)非递归遍历'
from collections import deque
if not treenode:
return
q = deque([treenode])
while q:
treenode = q.popleft()
print treenode.data
if treenode.left:
q.append(treenode.left)
if treenode.right:
q.append(treenode.right)
def getheight(self):
''' 获取二叉树深度 '''
return self.__get_tree_height(self.root)
def __get_tree_height(self, root):
if root is 0:
return 0
if root.left is 0 and root.right is 0:
return 1
else:
left = self.__get_tree_height(root.left)
right = self.__get_tree_height(root.right)
if left < right:
return right + 1
else:
return left + 1
def getleafcount(self):
''' 获取二叉树叶子数 '''
return self.__count_leaf_node(self.root)
def __count_leaf_node(self, root):
res = 0
if root is 0:
return res
if root.left is 0 and root.right is 0:
res += 1
return res
if root.left is not 0:
res += self.__count_leaf_node(root.left)
if root.right is not 0:
res += self.__count_leaf_node(root.right)
return res
def getbranchcount(self):
''' 获取二叉树分支节点数 '''
return self.__get_branch_node(self.root)
def __get_branch_node(self, root):
if root is 0:
return 0
if root.left is 0 and root.right is 0:
return 0
else:
return 1 + self.__get_branch_node(root.left) + self.__get_branch_node(root.right)
def replacelem(self):
''' 二叉树所有结点的左右子树相互交换 '''
self.__replace_element(self.root)
def __replace_element(self, root):
if root is 0:
return
root.left, root.right = root.right, root.left
self.__replace_element(root.left)
self.__replace_element(root.right)
node1 = TreeNode(data=1)
node2 = TreeNode(node1, 0, 2)
node3 = TreeNode(data=3)
node4 = TreeNode(data=4)
node5 = TreeNode(node3, node4, 5)
node6 = TreeNode(node2, node5, 6)
node7 = TreeNode(node6, 0, 7)
node8 = TreeNode(data=8)
root = TreeNode(node7, node8, 'root')
bt = BinaryTree(root)
print u'''
生成的二叉树
------------------------
root
7 8
6
2 5
1 3 4
-------------------------
'''
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30