京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python实现简单过滤文本段的方法
这篇文章主要介绍了Python实现简单过滤文本段的方法,涉及Python针对文本的读取及字符串遍历、判断、打印等相关操作技巧,需要的朋友可以参考下
一、问题:
如下文本:
## Alignment 0: score=397.0 e_value=8.2e-18 N=9 scaffold1&scaffold106 minus
0- 0: 10026549 10007782 2e-75
0- 1: 10026550 10007781 8e-150
0- 2: 10026552 10007780 1e-116
0- 3: 10026555 10007778 0
0- 4: 10026570 10007768 0
0- 5: 10026579 10007758 4e-15
0- 6: 10026581 10007738 2e-44
0- 7: 10026587 10007734 9e-145
0- 8: 10026591 10007732 2e-147
## Alignment 1: score=2304.0 e_value=1e-164 N=47 scaffold1&scaffold107 minus
1- 0: 10026836 10007942 2e-84
1- 1: 10026839 10007940 0
1- 2: 10026840 10007938 0
1- 3: 10026842 10007937 9e-82
1- 4: 10026843 10007935 7e-79
1- 5: 10026847 10007933 3e-119
1- 6: 10026850 10007932 2e-87
1- 7: 10026854 10007928 5e-22
1- 8: 10026855 10007927 3e-101
1- 9: 10026856 10007925 1e-106
1- 10: 10026857 10007924 0
1- 11: 10026858 10007922 9e-123
1- 12: 10026859 10007921 1e-80
1- 13: 10026860 10007920 8e-104
1- 14: 10026862 10007918 4e-25
1- 15: 10026863 10007917 0
1- 16: 10026864 10007912 4e-40
1- 17: 10026865 10007911 0
1- 18: 10026866 10007910 7e-122
1- 19: 10026867 10007908 2e-25
1- 20: 10026868 10007907 0
1- 21: 10026869 10007905 0
1- 22: 10026870 10007904 3e-150
1- 23: 10026871 10007903 5e-77
1- 24: 10026874 10007901 0
1- 25: 10026875 10007897 0
1- 26: 10026876 10007896 0
1- 27: 10026877 10007894 0
1- 28: 10026880 10007893 3e-52
1- 29: 10026881 10007892 0
1- 30: 10026882 10007891 0
1- 31: 10026883 10007890 0
1- 32: 10026886 10007889 1e-50
1- 33: 10026887 10007888 6e-157
1- 34: 10026888 10007887 0
1- 35: 10026889 10007884 0
1- 36: 10026890 10007883 2e-18
1- 37: 10026891 10007882 9e-64
1- 38: 10026892 10007881 0
1- 39: 10026895 10007880 0
1- 40: 10026898 10007875 0
1- 41: 10026900 10007874 0
1- 42: 10026901 10007873 0
1- 43: 10026902 10007871 2e-123
1- 44: 10026903 10007870 0
1- 45: 10026905 10007869 0
1- 46: 10026909 10007868 1e-81
## Alignment 2: score=811.0 e_value=3.3e-43 N=17 scaffold1&scaffold111 minus
2- 0: 10026595 10007449 6e-40
2- 1: 10026599 10007448 4e-90
2- 2: 10026600 10007447 0
2- 3: 10026601 10007444 9e-55
2- 4: 10026603 10007438 4e-78
2- 5: 10026604 10007434 9e-122
2- 6: 10026606 10007432 2e-162
2- 7: 10026607 10007427 0
2- 8: 10026608 10007426 0
2- 9: 10026612 10007417 0
2- 10: 10026613 10007415 8e-128
2- 11: 10026614 10007414 3e-64
2- 12: 10026615 10007409 0
2- 13: 10026616 10007406 0
2- 14: 10026617 10007403 1e-171
2- 15: 10026618 10007402 0
2- 16: 10026619 10007397 7e-18
........
要求:如果Alignment后面少于20行,把整个的去掉
二、实现方法:
python代码:
#!/usr/bin/python
sum = 0
sumdata = []
FD = open("/root/data.txt","r")
line = FD.readline()
while line:
if line.find("Alignment") == 3:
if sum >= 20:
for i in sumdata:
print i,
sum=0
sumdata=[line]
else:
sum = sum + 1
sumdata.append(line)
line=FD.readline()
if len(line) == 0:
if sum >= 20:
for i in sumdata:
print i,
附:
perl代码
#!/usr/bin/perl
open(FD,"/root/data.txt");
while (){
if ($_ =~ /Alignment/){
if($sum >= 20){
print @sumdata;}
$sum=0;
@sumdata=($_);}
else{
$sum++;
push(@sumdata,$_);}
}
print @sumdata if $sum >=20;
close(FD);
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22