
1、字段抽取
字段截取函数:substr(x,start,stop)
[python] view plain copy
tel <- '18922254812';
#运营商
band <- substr(tel, 1, 3)
#地区
area <- substr(tel, 4, 7)
#号码段
num <- substr(tel, 8, 11)
tels <- read.csv('1.csv');
#运营商
bands <- substr(tels[,1], 1, 3)
#地区
areas <- substr(tels[,1], 4, 7)
#号码段
nums <- substr(tels[,1], 8, 11)
new_tels <- data.frame(tels, bands, areas, nums)
2、字段合并
字段合并,是指将同一个数据框中的不同列,进行合并,形成新的列
字符分割函数:paste(x1,x2,...,sep=" ")
[python] view plain copy
data <- read.table('1.csv', sep=' ')
p_data <- paste(data[,1], data[,2], data[,3], sep="")
newData <- data.frame(data, p_data)
3、记录合并
将两个结构相同的数据框,合并成一个数据框
记录合并函数:rbind(dataFrame1,dataFrame2,...)
[python] view plain copy
data_1_1 <- read.table('1.csv', sep='|', header=TRUE, fileEncoding='utf-8');
data_1_2 <- read.table('2.csv', sep='|', header=TRUE, fileEncoding='utf-8');
data_1_3 <- read.table('3.csv', sep='|', header=TRUE, fileEncoding='utf-8');
data <- rbind(data_1_1, data_1_2, data_1_3)
fix(data)
4、字段匹配
将不同结构的数据框,按照一定的条件进行合并(两表合并)
字段匹配函数:merge(x,y,by.x,by.y)
[python] view plain copy
items <- read.table('1.csv', sep='|', header=FALSE, fileEncoding='utf-8')
fix(items)
prices <- read.table('2.csv', sep='|', header=FALSE, fileEncoding='utf-8')
fix(prices)
itemPrices <- merge(prices, items, by.x=c('V1'), by.y=c('V1'))
fix(itemPrices)
Join( )也可以用来实现两表连接:
[python] view plain copy
inner_join(t1,t2,by=c("列名1","列名2"))
#功能等于:
merge(t1,t2,by.x="列名",by.y="列名")
#还有其他的join方式:
full_join 全连接
left_join 左连接
right_join 右连接
5、字符串处理高级技巧
[python] view plain copy
x <- c("Hellow", "World", "!")
#一、字符串长度
nchar(x)
#[1] 6 5 1
length(x)
#[1] 3
#二、字符串替换
chartr("HW", "ZX", x)
#[1] "Zellow" "Xorld" "!"
#三、字符串的大小写转换
tolower(x)
#[1] "hellow" "world" "!"
toupper(x)
#[1] "HELLOW" "WORLD" "!"
#四、字符串的拼接
paste("CK", 1:6, sep="")
#[1] "CK1" "CK2" "CK3" "CK4" "CK5" "CK6"
x <- list(a="aaa", b="bbb", c="ccc")
y <- list(d=1, e=2)
paste(x, y, sep="-")
#较短的向量被循环使用
#[1] "aaa-1" "bbb-2" "ccc-1"
#五、字符串切割
text <- "Hello word!"
strsplit(text, ' ')
#[[1]]
#[1] "Hello" "word!"
class(strsplit(text, ' '))
#[1] "list"
#有一种情况很特殊:
#如果split参数的字符长度为0,得到的结果就是一个个的字符:
strsplit(text, '')
#[[1]]
# [1] "H" "e" "l" "l" "o" " " "w" "o" "r" "d" "!"
#一个首字符大写的综合案例
capStringAll <- function(x)
{
s <- strsplit(x, " ")[[1]]
paste(toupper(substring(s, 1, 1)), substring(s, 2),
sep = "", collapse = " ")
}
capStringAll("hello word")
#[1] "Hello Word"
capString <- function(x)
{
s <- strsplit(x, " ")[[1]]
s[1] <- paste(toupper(substring(s[1], 1, 1)), substring(s[1], 2), sep = "", collapse = " ");
paste(s, sep = "", collapse = " ")
}
capString("hello word")
#[1] "Hello word"
#六、字符串的查找
#grep, grepl: 返回pattern的匹配项。
#前者返回匹配项目的下标;后者返回逻辑值,x长度有多少,就返回多少个逻辑值。
#如果添加一个value参数,赋值为T,则返回匹配项的值。
text <- c("Company", "Coworker", "Cooperation", "Can")
grep("o", text)
#[1] 1 2 3
grepl("o", text)
#[1] TRUE TRUE TRUE FALSE
grep("o", text, value = T)
#[1] "Company" "Coworker" "Cooperation"
#七、字符串的替换
#sub, gsub: 返回用replacement替换匹配项之后的x(字符型向量)。
#前者只替换向量中每个元素的第一个匹配值,后者替换所有匹配值。
#注意以下两个例子中"o"的替换方式。
sub("o", "xx", text)
#[1] "Cxxmpany" "Cxxworker" "Cxxoperation" "Can"
gsub("o", "xx", text)
#[1] "Cxxmpany" "Cxxwxxrker" "Cxxxxperatixxn" "Can"
#八、字符串的截取
x <- "123456789"
substr(x, 2, 4)
#[1] "234"
substring(x, c(2,4), c(4,5,8))
#[1] "234" "45" "2345678"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26