今天,我们继续开启分类算法之旅,它是一种高效简介的分类算法,后面有一个集成算法正是基于它之上,它是一个可视化效果很好的算法,这个算法就是决策树。
1 一个例子
有一堆水果,其中有香蕉,苹果,杏这三类,现在要对它们分类,可以选择的特征有两个:形状和大小,其中形状的取值有个:圆形和不规则形,大小的取值有:相对大和相对小。现在要对其做分类,我们可以这样做:
首先根据特征:形状,如果不是圆形,那么一定是香蕉,这个就是叶子节点;
如果是圆形,
再进一步根据大小这个特征判断,如果是相对大的,则是苹果,如果否,则是杏子,至此我们又得到两个叶子节点,并且到此分类位置,都得到了正确划分三种水果的方法。
大家可以体会刚才这个过程,这就是一个决策分类,构建树的一个过程,说成是树,显得有点高大上,再仔细想想就是一些列 if 和 else 的嵌套,说是树只不过是逻辑上的一种神似罢了。
刚才举的这个例子,有两个特征:形状和大小,并且选择了第一个特征:形状作为第一个分裂点,大小作为第二个分裂点,那么不能选择第二个特征作为第一分裂点吗? 这样选择有没有公式依据呢?
2 分裂点选择依据
在上个例子中,有三类水果,现在假设杏都被我们家的宝宝吃完了,现在手里只有香蕉和苹果这两类水果了,并且这个时候要对它们做分类,此时机灵的你,一定会根据特征:形状对它们分类了,因为这样一下就会把它们分开了,此时我们说这类集合的纯度更高,与之前的那三类水果在形状这个特征上。
纯度这个概念是很好的理解的,种类越少纯度越高,自然两类纯度更高。 此时有人提出了一个和它相反的但是不那么容易理解的概念:熵。它们是敌对双方:熵越大,纯度越低;熵越小,纯度越高。
这是一种概念,那么如何用公式量化熵呢:
其中 i 等于苹果,香蕉,杏,P(i)是集合中取得某一个水果的概率。
试想一下,如果我们想更好地对某个集合完成分类,会怎么做呢?我们一定会优先选择一个特征,使得以这个特征做分类时,它们能最大程度的降低熵,提高分类的纯度,极限的情况是集合中100个元素(集合中只有两类水果),根据某个最优特征,直接将分为两类,一类都是苹果,一类都是杏,这样熵直接等于0。
这个特点就是所谓的信息增益,熵降低的越多,信息增益的就越多。很多时候都不会发生上述说的这个极限情况,就像文章一开始举的例子,根据形状划分后,熵变小了,但是未等于0,比如刚开始三类水果的熵等于0.69,现在根据形状分裂后,熵等于了0.4,所以信息增益为0.69 – 0.4 = 0.29 。如果根据大小划分,信息增益为0.1,那么我们回考虑第一个分裂特征:形状。
这种方法有问题吗?
3 信息增益越大,分类效果越好?
这是只根据信息增益选择分裂特征点的bug,请看下面举例。
如果某个特征是水果的唯一标示属性:编号,那么此时如果选择这个特征,共得到100个叶子节点(假设这堆水果一共有100个),每个叶子节点只含有1个样本,并且此时的信息增益最大为 0.69 – 0 = 0.69 。
但是,这是好的分类吗? 每一个样本作为单独的叶子节点,当来了101号水果,都不知道划分到哪一个叶子节点,也就不知道它属于哪一类了!
因此,这个问题感觉需要除以某个变量,来消除这种情况的存在。
它就是信息增益率,它不光考虑选择了某个分裂点后能获得的信息增益,同时还要除以分裂出来的这些节点的熵值,什么意思呢? 刚才不是分裂出来100个节点吗,那么这些节点自身熵一共等于多少呢:
再除以上面这个数后,往往信息增益率就不会那么大了。这就是传说中的从ID3 到 C4.5 的改进。
4 与熵的概念类似的基尼系数
只需要知道基尼系数和熵差不多的概念就行了,只不过量化的公式不同而已,这就说明理解了,至于公式长什么样子,用的时候去查就行了。
让我们看一下远边的大海,和海边优美的风景,放松一下吧!
5 展望
以上介绍了决策树的一些概念和分裂点选取的基本方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06