Python中字典映射类型的学习教程
字典是python语言中唯一的映射类型,用花括号{}表示,一个字典条目就是一个键值对,方法keys()返回字典的键列表,values()返回字典的值列表,items()返回字典的键值对列表。字典中的值没有任何限制,它们可以是任意python对象,但字典中的键是有类型限制的,每个键只能对应一个值,且键必须是可哈系的,所有不可变类型都是可哈希的。不可变集合frozenset的元素可作为字典的键,但可变集合set就不行了。
以下是字典类型的常用方法。
clear():删除字典中所有元素。
copy():返回字典(浅复制)的一个副本。
fromkeys(seq,val=None):创建并返回一个新字典,以seq中的元素做该字典的键,val做该字典中所有键对应的初始值。
get(key,default=None):返回字典中的键key对应的值value,如果字典中不存在此键,则返回default的值。
has_key(key):如果键key在字典中存在,返回True,否则返回False。python2.2后这个方法几乎已废弃不用了,通常用in来替代。
items():返回一个包含字典中键值对元组的列表。
keys():返回一个包含字典中键的列表。
iter():方法iteritems()、iterkeys()、itervalues()与它们对应的非迭代方法一样,不同的是它们返回一个迭代子,而不是一个列表。
pop(key[,default]):和方法get()类似,如果字典中key键存在,删除并返回dict[key],如果key键不存在,且没有给出default的值,引发KeyError异常。
setdefault(key,default=None):和方法get()相似,如果字典中不存在key键,由dict[key]=default为它赋值。
update(dict2):将字典dict2的键值对添加到当前字典中。
values():返回一个包含字典中所有值的列表。
键可以是多种类型,但键是唯一的不重复的,值可以不唯一
>>> d = {'a':1, 'b':2}
>>> d
{'b': 2, 'a': 1}
>>> L = [('Jonh',18), ('Nancy',19)]
>>> d = dict(L) #通过包含键值的列表创建
>>> d
{'Jonh': 18, 'Nancy': 19}
>>> T = tuple(L)
>>> T
(('Jonh', 18), ('Nancy', 19))
>>> d = dict(T) #通过包含键值的元组创建
>>> d
{'Jonh': 18, 'Nancy': 19}
>>> d = dict(x = 1, y = 3) #通过关键字参数创建
>>> d
{'x': 1, 'y': 3}
>>> d[3] = 'z'
>>> d
{3: 'z', 'x': 1, 'y': 3}
还有一个创建字典的方法就是 fromkeys(S [ , v]) python里的解释是 New dict with key from S and value equal to v ,即将S里的元素作为键,v作为所有键的值,v 的默认值为 None。可以通过已存在的字典 d 调用 d.fromkeys(S [, v] ) 也可以通过类型调用 dict.fromkeys( S [, v] )
>>> d
{3: 'z', 'y': 3}
>>> L1 = [1,2,3]
>>> d.fromkeys(L1)
{1: None, 2: None, 3: None}
>>> {}.fromkeys(L1,'nothing')
{1: 'nothing', 2: 'nothing', 3: 'nothing'}
>>> dict.fromkeys(L1,'over')
{1: 'over', 2: 'over', 3: 'over'}
字典是无序的,所以不能通过索引来获取值,要通过键来找到关联值。对于不存在的键,会出现错误KeyError
>>> d
{3: 'z', 'x': 1, 'y': 3}
>>> d[3]
'z'
>>> d['x']
1
>>> d[0]
Traceback (most recent call last):
File "<pyshell#26>", line 1, in <module>
d[0]
KeyError: 0
字典操作和方法:
len( d ) 返回字典d里面的键值对数目
x in d 查询字典d中是否有键 x
>>> d = {'x':1,'y':3}
>>> len(d)
2
>>> 'x' in d
True
>>> 'z' not in d
True
d [ x ] = y 若键 x 存在,则修改 x 对应的值为 y, 若键 x 不存在,则在字典 d 中增加键值对 x : y
>>> d
{'x': 1, 'y': 3}
>>> d['x'] = 1.5
>>> d
{'x': 1.5, 'y': 3}
>>> d['z'] = 5
>>> d
{'z': 5, 'x': 1.5, 'y': 3}
del d[x] 删除字典 d 中键为 x 的键值对,若 x 不存在会出现 KeyError
>>> d = {'z': 5, 'x': 1.5, 'y': 3}
>>> del d['x']
>>> d
{'z': 5, 'y': 3}
>>> del d['x']
Traceback (most recent call last):
File "<pyshell#66>", line 1, in <module>
del d['x']
KeyError: 'x'
d.clear() 清空字典d
d.copy() 对字典 d 进行浅复制,返回一个和d有相同键值对的新字典
>>> d
{'z': 5, 'y': 3}
>>> d.copy()
{'z': 5, 'y': 3}
d.get( x [ , y]) 返回字典 d 中键 x 对应的值,键 x 不存在的时候返回 y, y 的默认值为None
>>> d = {'z': 5, 'x': 1.5, 'y': 3}
>>> d.get('x')
1.5
>>> del d['x']
>>> d.get('x')
>>> d.get('x','nothing')
'nothing'
d.items() 将字典 d 中所有键值对以dict_items的形式返回(Python 2中d.iteritems() 返回一个针对键值对的迭代器对象,Python 3中没有 iteritems 方法了)
>>> d = {'z': 5, 'x': 1.5, 'y': 3}
>>> d.items()
dict_items([('z', 5), ('x', 1.5), ('y', 3)])
>>> list(d.items())
[('z', 5), ('x', 1.5), ('y', 3)]
d.keys() 将字典 d 中所有的键以dict_keys形式返回(Python 2 中d.iterkeys() 返回一个针对键的迭代器对象,Python 3 没有此语法)
>>> d.keys()
dict_keys(['z', 'x', 'y'])
>>> for x in d.keys():
print(x)
z
x
y
d.pop( x ) 返回给定键 x 对应的值,并将该键值对从字典中删除
>>> d = {'z': 5, 'x': 1.5, 'y': 3}
>>> d.pop('x')
1.5
>>> d.pop('x')
Traceback (most recent call last):
File "<pyshell#92>", line 1, in <module>
d.pop('x')
KeyError: 'x'
d.popitem( ) 返回并删除字典 d 中随机的键值对
>>> d = {'z': 5, 'x': 1.5, 'y': 3}
>>> d.popitem()
('z', 5)
>>> d.popitem()
('x', 1.5)
d.setdefault( x, [ , y ] ) 返回字典 d 中键 x 对应的值,若键 x 不存在,则返回 y, 并将 x : y 作为键值对添加到字典中,y 的默认值为 None
>>> d = {'z': 5, 'x': 1.5, 'y': 3}
>>> d.setdefault('x')
1.5
>>> del d['x']
>>> d.setdefault('x','Look!')
'Look!'
>>> d
{'z': 5, 'x': 'Look!', 'y': 3}
d.update( x ) 将字典 x 所有键值对添加到字典 d 中(不重复,重复的键值对用字典 x 中的键值对替代字典 d 中)
>>> d1 = {'x':1, 'y':3}
>>> d2 = {'x':2, 'z':1.4}
>>> d1.update(d2)
>>> d1
{'z': 1.4, 'x': 2, 'y': 3}
d.values( ) 将字典里所有的值以dict_values 的形式返回(Python 2 中d.itervalues() 返回针对字典d里所有值的迭代器对象,Python 3无此语法)
>>> d1
{'z': 1.4, 'x': 2, 'y': 3}
>>> d1.values()
dict_values([1.4, 2, 3])
>>> list(d1.values())
[1.4, 2, 3]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30