京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中多线程thread与threading的实现方法
学过Python的人应该都知道,Python是支持多线程的,并且是native的线程。本文主要是通过thread和threading这两个模块来实现多线程的。
python的thread模块是比较底层的模块,python的threading模块是对thread做了一些包装的,可以更加方便的被使用。
这里需要提一下的是python对线程的支持还不够完善,不能利用多CPU,但是下个版本的python中已经考虑改进这点,让我们拭目以待吧。
threading模块里面主要是对一些线程的操作对象化了,创建了叫Thread的class。
一般来说,使用线程有两种模式,一种是创建线程要执行的函数,把这个函数传递进Thread对象里,让它来执行;另一种是直接从Thread继承,创建一个新的class,把线程执行的代码放到这个新的 class里。
我们来看看这两种做法吧。
一、Python thread实现多线程
#-*- encoding: gb2312 -*-
import string, threading, time
def thread_main(a):
global count, mutex
# 获得线程名
threadname = threading.currentThread().getName()
for x in xrange(0, int(a)):
# 取得锁
mutex.acquire()
count = count + 1
# 释放锁
mutex.release()
print threadname, x, count
time.sleep(1)
def main(num):
global count, mutex
threads = []
count = 1
# 创建一个锁
mutex = threading.Lock()
# 先创建线程对象
for x in xrange(0, num):
threads.append(threading.Thread(target=thread_main, args=(10,)))
# 启动所有线程
for t in threads:
t.start()
# 主线程中等待所有子线程退出
for t in threads:
t.join()
if __name__ == '__main__':
num = 4
# 创建4个线程
main(4)
二、Python threading实现多线程
#-*- encoding: gb2312 -*-
import threading
import time
class Test(threading.Thread):
def __init__(self, num):
threading.Thread.__init__(self)
self._run_num = num
def run(self):
global count, mutex
threadname = threading.currentThread().getName()
for x in xrange(0, int(self._run_num)):
mutex.acquire()
count = count + 1
mutex.release()
print threadname, x, count
time.sleep(1)
if __name__ == '__main__':
global count, mutex
threads = []
num = 4
count = 1
# 创建锁
mutex = threading.Lock()
# 创建线程对象
for x in xrange(0, num):
threads.append(Test(10))
# 启动线程
for t in threads:
t.start()
# 等待子线程结束
for t in threads:
t.join()
相信本文所述Python多线程实例对大家的Python程序设计能够起到一定的借鉴价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29