python使用threading获取线程函数返回值的实现方法
这篇文章主要介绍了python使用threading获取线程函数返回值的实现方法,需要的朋友可以参考下
threading用于提供线程相关的操作,线程是应用程序中工作的最小单元。python当前版本的多线程库没有实现优先级、线程组,线程也不能被停止、暂停、恢复、中断。
threading模块提供的类:
Thread, Lock, Rlock, Condition, [Bounded]Semaphore, Event, Timer, local。
threading 模块提供的常用方法:
threading.currentThread(): 返回当前的线程变量。
threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。
threading 模块提供的常量:
threading.TIMEOUT_MAX 设置threading全局超时时间。
好了,正文开始:
最近需要用python写一个环境搭建工具,多线程并行对环境各个部分执行一些操作,并最终知道这些并行执行的操作是否都执行成功了,也就是判断这些操作函数的返回值是否为0。但是threading并没有显式的提供获取各个线程函数返回值的方法,只好自己动手,下面就介绍一下自己的实现方式。
一开始考虑到执行的操作可能有很多,而且后续会不断补充,因此先写了一个通用的多线程执行类,封装线程操作的基本方法,如下:
import threading
class MyThread(object):
def __init__(self, func_list=None):
#所有线程函数的返回值汇总,如果最后为0,说明全部成功
self.ret_flag = 0
self.func_list = func_list
self.threads = []
def set_thread_func_list(self, func_list):
"""
@note: func_list是一个list,每个元素是一个dict,有func和args两个参数
"""
self.func_list = func_list
def start(self):
"""
@note: 启动多线程执行,并阻塞到结束
"""
self.threads = []
self.ret_flag = 0
for func_dict in self.func_list:
if func_dict["args"]:
t = threading.Thread(target=func_dict["func"], args=func_dict["args"])
else:
t = threading.Thread(target=func_dict["func"])
self.threads.append(t)
for thread_obj in self.threads:
thread_obj.start()
for thread_obj in self.threads:
thread_obj.join()
def ret_value(self):
"""
@note: 所有线程函数的返回值之和,如果为0那么表示所有函数执行成功
"""
return self.ret_flag
MyThread类会接受一个func_list参数,每个元素是一个dict,有func和args两个key,func是真正要执行的函数引用,args是函数的参数。其中最主要的方法是start方法,会多线程执行每个func,然后一直等到所有线程都执行结束后退出。接下来的关键就是如何对self.ret_flag设置正确的值,以判断所有的线程函数是否都返回0了。
我的实现是,在MyThread class中写一个方法trace_func,作为直接的线程函数,这个trace_func中执行真正需要执行的函数,从而可以获取到该函数的返回值,设置给self.ret_flag。
这个trace_func的第一参数是要执行的func引用,后面是这个func的参数,具体代码如下:
def start(self):
"""
@note: 启动多线程执行,并阻塞到结束
"""
self.threads = []
self.ret_flag = 0
for func_dict in self.func_list:
if func_dict["args"]:
new_arg_list = []
new_arg_list.append(func_dict["func"])
for arg in func_dict["args"]:
new_arg_list.append(arg)
new_arg_tuple = tuple(new_arg_list)
t = threading.Thread(target=self.trace_func, args=new_arg_tuple)
else:
t = threading.Thread(target=self.trace_func, args=(func_dict["func"],))
self.threads.append(t)
for thread_obj in self.threads:
thread_obj.start()
for thread_obj in self.threads:
thread_obj.join()
这样能够成功获得返回值了,实验:
def func1(ret_num):
print "func1 ret:%d" % ret_num
return ret_num
def func2(ret_num):
print "func2 ret:%d" % ret_num
return ret_num
def func3():
print "func3 ret:100"
return 100
mt = MyThread()
g_func_list = []
g_func_list.append({"func":func1,"args":(1,)})
g_func_list.append({"func":func2,"args":(2,)})
g_func_list.append({"func":func3,"args":None})
mt.set_thread_func_list(g_func_list)
mt.start()
print "all thread ret : %d" % mt.ret_flag
最后的输出结果
func1 ret:1
func2 ret:2
func3 ret:100
all thread ret : 103
总结
以上所述是小编给大家介绍的python使用threading获取线程函数返回值的实现方法,希望对大家有所帮助
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21