
sql中插值法完成缺失数据的填充
从Excel中导入了一批数据到Sqlserver,但因为原始数据不全,中间有些数据漏掉了。比如下面这种情况。ID为2的so数据为0。ID为3,4的co1数据缺失了,暂时用0代替。
ID so co1
1 0.1 0.1
2 0 0.2
3 0.2 0
4 0.25 0
5 0.2 0.4
使用差值法将这些缺失的数据补齐。插值计算方法如下:(也可以不使用这两个步骤,只要最后的结果一致就行)
步骤一:计算缺失值上下的已知值间的斜率:
k = (b2 - b1)/(n + 1) n 为缺失数据的个数
步骤二:计算对应的缺失值
a(i) = b1 + k * i
经过处理后,得到的数据是这样的:
ID so co1
1 0.1 0.1
2 0.15 0.2
3 0.2 0.27
4 0.25 0.33
5 0.2 0.4
现在希望在sqlserver中写一个存储过程,自动完成上述过程。
so,co1为原始表的字段,这样的字段一共有七八个。所以一次可以只考虑一个字段的缺失值填充。
b2 b1是缺失数据前后的正常数据。比如
ID co1
1 0.1
2 0.2
3 0
4 0
5 0.4
这里b2为ID=5,b1为ID=2的数据。b2和b1需要在sql过程中去判断。
k是插值的斜率
i为第几个缺失数据。比如这里在填充ID为3,co1的数据时,i=1。填充ID为4,co1的数据时,i=2。
---------
SQL 语句
方法通过排序的方式求得的@NUM1和@NUM2,但缺失数据多的时候,不再适用了啊。
IF OBJECT_ID('TB') IS NOT NULL DROP TABLE TB
IF OBJECT_ID('FUN_SO') IS NOT NULL DROP FUNCTION FUN_SO
IF OBJECT_ID('FUN_CO1') IS NOT NULL DROP FUNCTION FUN_CO1
GO
CREATE TABLE TB(
ID INT,
SO NUMERIC(19,2),
CO1 NUMERIC(19,2)
)
INSERT INTO TB
SELECT 1, 0.1, 0.1 union all
SELECT 2, 0, 0.2 union all
SELECT 3, 0.2, 0 union all
SELECT 4, 0, 0 union all
SELECT 5, 0, 0.4 union all
SELECT 6, 0.1, 0.5
GO
CREATE FUNCTION FUN_SO(@ID INT)
RETURNS NUMERIC(19,2)
AS
BEGIN
DECLARE @NUM1 NUMERIC(19,2),@ID1 INT,@NUM2 NUMERIC(19,2),@ID2 INT
SELECT TOP 1 @ID1=ID , @NUM1=SO FROM TB WHERE ID<=@ID AND SO<>0 ORDER BY ID DESC
SELECT TOP 1 @ID2=ID , @NUM2=SO FROM TB WHERE ID>=@ID AND SO<>0 ORDER BY ID ASC
IF @ID2<>@ID1
RETURN @NUM1+(((@NUM2-@NUM1)/(@ID2-@ID1))*(@ID-@ID1))
RETURN @NUM1
END
GO
CREATE FUNCTION FUN_CO1(@ID INT)
RETURNS NUMERIC(19,2)
AS
BEGIN
DECLARE @NUM1 NUMERIC(19,2),@ID1 INT,@NUM2 NUMERIC(19,2),@ID2 INT
SELECT TOP 1 @ID1=ID , @NUM1=CO1 FROM TB WHERE ID<=@ID AND CO1<>0 ORDER BY ID DESC
SELECT TOP 1 @ID2=ID , @NUM2=CO1 FROM TB WHERE ID>=@ID AND CO1<>0 ORDER BY ID ASC
IF @ID2<>@ID1
RETURN @NUM1+(((@NUM2-@NUM1)/(@ID2-@ID1))*(@ID-@ID1))
RETURN @NUM1
END
GO
SELECT ID,DBO.FUN_SO(ID),DBO.FUN_CO1(ID) FROM TB
/*
10.100.10
20.150.20
30.200.27
40.170.33
50.130.40
60.100.50
*/
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03