斯坦福重磅发布 丨AI 指数年度报告丨附报告下载
斯坦福大学近日重磅发布了 AI 指数 2017 年度报告,从学术、产业、技术等多个角度盘点了 AI 领域的动态和进度。
点击【阅读原文】下载 "AI 指数年度报告"
毋庸置疑 ,AI 是近年来的行业热点,吸引了越来越多的从业者、行业领袖、决策者和公众的关注。AI 指数是斯坦福大学 AI 百年研究的一个项目,旨在追踪 AI 领域的行业动态,促进对 AI 的了解。
报告中进行了大量的调查和统计,主要包括 4 个部分:
活动量(Volume of Activity)
这部分围绕 AI 领域的“多少”(how much)方面。例如,论文发表数量、参会人数、创业投资等。
技术表现(Technical Performance)
这部分围绕 AI 表现“有多好”(how much)的方面。例如,计算机理解图像和证明定理的性能。
衍生测量(Derivative Measures)
我们对各个趋势之间的关系进行探究。还引入了一种探索性的方法,即AI 活力指数(AI Vibrancy Index),将学术界和行业的AI 趋势结合起来,对AI领域的现状进行量化。
接近人类表现(Towards Human Performance)
我们列举了 AI 在接近或超越人类表现方面取得的重大进展,以及当中遇到的困难与挑战。
活动量丨Volume of Activity
学术界
1. 论文发表数量
自 1996 年以来,计算机科学领域的论文数量增长了 6 倍,但在同一时期,每年发表的 AI 论文数量增加 了 9 倍。
以下学术论文的 Scopus 数据库中所收录,关键词为“人工智能”的计算机科学论文发表数量。
2. 选课人数
自1996年以来,斯坦福大学的 AI 课程选课人数增加了 11 倍。
机器学习(ML)是 AI 的一个分支。在这里之所以强调机器学习课程,是因为其选课人数的激增,而且机器学习技术对最近许多 AI 成果至关重要。
下图为斯坦福大学的 AI 和机器学习课程的选课人数。
由于其他大学的数据有限,因此在报告中突出斯坦福的数据。但是根据参考数据,可以推测其他大学的趋势与斯坦福类似。
3. 参会情况
以下为 AI 会议的参会人数。
研究重点转移,大型 AI 会议(1000人以上)中,研究重点已经从符号推理转向机器学习和深度学习。
但是在小型 AI 会议(1000人以下)中,符号推理方面仍在稳步发展。
行业
1. AI 创业公司
以下为风投资本支持的 AI 创业公司数量。自 2000 年以来,这一数量增加了 14倍。
2. AI 创业基金
在美国投资 AI 创业的基金数量也在增长,自 2000 年以来,每年投入 AI 创业的资本增加了 6 倍:
3. 职位需求
根据两个在线求职平台 Indeed 和 Monster 的数据,AI 相关岗位需求也在增长。自 2013 年以来,在美国需要 AI 技能的工作岗位已经增长了4.5 倍。
根据 Indeed 的数据,不同国家需要 AI 技能的工作岗位也在增加。
Monster 平台发布每年 AI 相关工作职位的数据,按具体技能划分。
4. 机器人进口
下面是产业自动化的情况。北美和全球的工作机器人购买量在增加。
开源软件
GitHub 项目统计
以下是 GitHub 上,TensorFlow 和 Scikit-Learn 软件包获得的星标(star)数量。(TensorFlow 和 Scikit-Learn 是用于进行深度学习和机器学习的热门软件包。)
以下是 Github 上其他 AI 和 ML 软件包的星标情况。
公共认知
媒体报道
关于 AI 的主流媒体文章报道中,含有正面情绪(蓝线)和负面情绪(紫线)的文章比例。
技术表现丨Technical Performance
视觉
1. 物体检测
大型视觉识别挑战(LSVRC)比赛中,AI 系统检测物体的性能也在显著提升。自 2010 年以来,错误率从 28.5 %下降到低于 2.5%。
2. 视觉问答
视觉问答(Visual Question Answering),是一种涉及计算机视觉和自然语言处理的学习任务。以下为在开放式回答有关图像问题的任务中,AI 系统的性能。
自然语言理解
1. 句法分析
AI 系统在确定句子句法结构上的表现。
2. 机器翻译
AI 系统在翻译英语和德语方面的表现。
3. 问答
AI 系统在文档中找到问题答案的性能。
4. 语音识别
AI 系统在识别语音录音的表现,2016 已经达到人类水平。
结语
这份报告中有以下亮点:
· 学术领域:自1996 年以来,AI 论文发表量增加了 9 倍;同时相关课程的选课人数也在增长。例如,斯坦福大学的 AI 课程选课人数比 20 年前,增加了 11 倍。
· 产业领域:自 2000 年以来,有资本支持的 AI 创业公司数量增长了 14 倍。针对AI 创业的投资在同一时期增加了 6 倍。
· 技术表现:AI 在图像和语音识别上都逐渐接近人类水平。AI 系统在针对现实问题的应用上表现出色,例如物体检测、理解和回答、图像分类等方面。
· 接近人类表现:AI 在某些方面已经能够接近人类的表现。比如在游戏应用中,AI 在国际象棋、围棋等方面都有不俗的表现。尽管如此,但当中也存在一些困难和挑战,比如在处理信息的深层含义方面,AI 与人类表现仍有一定的差距。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31