学习了那么多机器学习模型,一切都是为了实践,动手自己写写这些模型的实现对自己很有帮助的,坚持,共勉。本文主要致力于总结贝叶斯实战中程序代码的实现(python)及朴素贝叶斯模型原理的总结。python的numpy包简化了很多计算,另外本人推荐使用pandas做数据统计。
一 引言
让你猜测一个身高2.16的人的职业,你一般会猜测他是篮球运动员。这个原理就是朴素贝叶斯原理,因为篮球运动员大多身高很高,所以这个人具有篮球运动员的条件,则猜测他是篮球运动员。
同理,另一个升高1.58的人,你应该不会猜他是篮球运动员。
二 理论
条件贝叶斯公式:p(Ci | x,y)=p(x,y | Ci)*p(Ci) / p(x,y)
计算每个类别的概率,若p(C1 | x,y) > p(~C1 | x,y), 则类别属于类C1,否则不属于类C1。
程序中在模型训练的时候,只需要先在训练样本中计算好先验概率 p(Ci) 和 条件概率 p(x,y | Ci) 即可,因为p(x,y)不随Ci变化,不影响p(Ci | x,y)的最好大小。
注:条件贝叶斯是保证条件之间独立的(文档分类中是假设一个词汇出现与其他词汇是否出现无关,然而同一主题的词汇一起出现的概率很高,存在关联),所以这个假设过于简单;尽管如此,然而事实表明,朴素贝叶斯的效果还很好。
三 实战1 -文本分类(应用过滤恶意留言等)
下面是二分类问题,文档只能属于0和1两个类别,
1 载入数据集:6条文本及它们各自的类别,这6条文本作为训练集。
from numpy import *
def loadDataSet():
postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1] #1 is abusive, 0 not
return postingList,classVec
2 创建词汇表:利用集合结构内元素的唯一性,创建一个包含所有词汇的词表。
[python] view plain copy
def createVocabList(dataSet):
vocabSet = set([]) #create empty set
for document in dataSet:
vocabSet = vocabSet | set(document) #union of the two sets
return list(vocabSet)
3 把输入文本根据词表转化为计算机可处理的01向量形式:
eq,测试文本1: ['love', 'my', 'dalmation']
词汇表:['cute', 'love', 'help', 'garbage', 'quit', 'I', 'problems', 'is', 'park', 'stop', 'flea', 'dalmation', 'licks', 'food', 'not', 'him', 'buying', 'posting', 'has', 'worthless', 'ate', 'to', 'maybe', 'please', 'dog', 'how', 'stupid', 'so', 'take', 'mr', 'steak', 'my']
向量化结果:[0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
[python] view plain copy
def setOfWords2Vec(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
else: print "the word: %s is not in my Vocabulary!" % word
return returnVec
4训练模型:在训练样本中计算先验概率 p(Ci) 和 条件概率 p(x,y | Ci),本实例有0和1两个类别,所以返回p(x,y | 0),p(x,y | 1)和p(Ci)。
此处有两个改进的地方:
(1)若有的类别没有出现,其概率就是0,会十分影响分类器的性能。所以采取各类别默认1次累加,总类别(两类)次数2,这样不影响相对大小。
(2)若很小是数字相乘,则结果会更小,再四舍五入存在误差,而且会造成下溢出。采取取log,乘法变为加法,并且相对大小趋势不变。
[python] view plain copy
def trainNB0(trainMatrix,trainCategory):
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory)/float(numTrainDocs)
p0Num = ones(numWords); p1Num = ones(numWords) #change to ones()
p0Denom = 2.0; p1Denom = 2.0 #change to 2.0
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = log(p1Num/p1Denom) #change to log()
p0Vect = log(p0Num/p0Denom) #change to log()
return p0Vect,p1Vect,pAbusive
5 分类:根据计算后,哪个类别的概率大,则属于哪个类别。
[python] view plain copy
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum(vec2Classify * p1Vec) + log(pClass1) #element-wise mult
p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0
6 测试函数:
加载数据集+提炼词表;
训练模型:根据六条训练集计算先验概率和条件概率;
测试模型:对训练两条测试文本进行分类。
[python] view plain copy
def testingNB():
listOPosts,listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
testEntry = ['love', 'my', 'dalmation']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)
testEntry = ['stupid', 'garbage']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)
缺点:词表只能记录词汇是否出现,不能体现这个词汇出现的次数。改进方法:采用词袋模型,见下面垃圾邮件分类实战。
四 实战2-垃圾邮件分类
1 对邮件的文本划分成词汇,长度小于2的默认为不是词汇,过滤掉即可。返回一串小写的拆分后的邮件信息。
[python] view plain copy
def textParse(bigString): #input is big string, #output is word list
import re
listOfTokens = re.split(r'\W*', bigString)
return [tok.lower() for tok in listOfTokens if len(tok) > 2]
2 文档词袋模型:使用数组代替集合数据结构,可以保存词汇频率信息。
[python] view plain copy
def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
return returnVec
3 输入为25封正常邮件和25封垃圾邮件。50封邮件中随机选取10封作为测试样本,剩余40封作为训练样本。
训练模型:40封训练样本,训练出先验概率和条件概率;
测试模型:遍历10个测试样本,计算垃圾邮件分类的正确率。
[python] view plain copy
def spamTest():
docList=[]; classList = []; fullText =[]
for i in range(1,26):
wordList = textParse(open('email/spam/%d.txt' % i).read())
# print wordList
docList.append(wordList)
fullText.extend(wordList)
classList.append(1)
wordList = textParse(open('email/ham/%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList = createVocabList(docList)#create vocabulary
trainingSet = range(50); testSet=[] #create test set
for i in range(10):
randIndex = int(random.uniform(0,len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
trainMat=[]; trainClasses = []
for docIndex in trainingSet:#train the classifier (get probs) trainNB0
trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
errorCount = 0
for docIndex in testSet: #classify the remaining items
wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
errorCount += 1
print "classification error",docList[docIndex]
print 'the error rate is: ',float(errorCount)/len(testSet)
#return vocabList,fullText
五 小结
上面我处理的样本的属性值都是分类型的,然而数值型的朴素贝叶斯能处理吗?
1 朴素贝叶斯处理数值型数据的方法:
(1) 区间离散化,设阈值,分段。
(2) 高斯化:求出概率密度函数,假设变量服从正态分布,根据已有变量统计均值和方差,
得出概率密度函数,这样就解决了计算连续值作为分类的条件概率值。
2 除0问题:
Laplace校准 所有计算均加一,总类别数目加n;
3 下溢出:很小的值相乘,四舍五入误差
采用log 乘法变相加;
4移除停用词:也可以提高文本分类的性能
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06