京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一种根据关键字进行分类的文本分类算法
这样我们可以得出这个算法的重点:
1.提取关键字
如何自动提取关键字呢?我们知道IDF值在一定程度上可以表达一个词的重要程度,像“我的”,“你的”这样的关键字肯定无法判断出文章的类别,他们的IDF值也是较低的。而“AK47”,“火箭炮”这样的关键字可以判断出文章类别,他们的IDF也比一般的词要高。所以,我们只需要选择IDF高于一定值的词,就可以提取出绝大多数关键字了。
2.关键字分类
识别关键字的类别也是一个大问题,如果手工识别是不现实的,网上也没有什么算法是进行关键字分类的。想来想去,最后还是用IDF值把这个问题给解决了。其实思路很简单,可以说是上面一个问题的一种延续。假设现在我们有军事,经济,人文的文本各100篇。将经济,人文的文章复制4次,这样,我们就有军事文本100篇,经济,人文的文本各500篇(注意,经济人文的文章都是有重复的,每篇文章存在4个完全相同的副本)。
然后我们计算这些文章的IDF值,想想会出现什么结果?我们知道IDF的计算公式是log(总文章数/出现次数)。假设关键字“AK47”在没进行处理之前,在10篇文章中出现,那么它的值为log(300/10)=log30=1.47.
处理之后,“AK47”出现的次数不变,但是总文章数已经变为1100篇,那么AK47的IDF值为:log(1100/10)=log110=2.04。我们可以看到,经过这样的处理,军事的关键字都得到了加权,但是经济,文化的关键字的IDF值变化很小。这样,我们就能够把军事的关键字同其他的关键字区分开来。
我做的实验中,分出的关键字至少80%是军事类别的,实际的例子就不贴出来了。有的朋友就会问了,那你是怎么进行文本分类的?难道也是手工分?
嘿嘿,这个当然不是了。上面的类别也只有几种,如果要做其他类别的样本,只要用爬虫抓取某个专业网站或者某一类新闻,然后进行分析出正文就OK了。我们的目标是尽量偷懒,呵呵。
解决了这两个难题,再回到算法本身来。首先,提取关键字,使得要比较的词语大大减少(我只提取15%~20%的关键字)。一篇1000字的文章词语也就那么300~400个,也就是说和一个类别比较50个关键字左右就可以判断出来了,也就是50次的hashmapping操作。然后,有几个类别就做几次判断,所以算法复杂度是O(m*n)。一般分成十几个类别已经很细了,整个算法复杂度不会很高。但是这个实验我没能做就申请离职了,伤心啊,我的心血都没了,如果以后有时间再实验下吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29