Python图像灰度变换及图像数组操作
使用python以及numpy通过直接操作图像数组完成一系列基本的图像处理
numpy简介:
NumPy是一个非常有名的 Python 科学计算工具包,其中包含了大量有用的工具,比如数组对象(用来表示向量、矩阵、图像等)以及线性代数函数。
数组对象可以实现数组中重要的操作,比如矩阵乘积、转置、解方程系统、向量乘积和归一化。这为图像变形、对变化进行建模、图像分类、图像聚类等提供了基础。
在上一篇python基本图像操作中,当载入图像时,通过调用 array() 方法将图像转换成NumPy的数组对象。NumPy 中的数组对象是多维的,可以用来表示向量、矩阵和图像。通过对图像的数组进行直接操作,就可以完成很多图像处理。
numpy的相关知识网上有很多资料,作为python科学计算的基础,还是非常值得认真学习的。
使用图像数组进行基本图像操作:
认识图像数组:
通过下面这几个程序我们看一下图像与灰度图的图像数组,以及numpy数组的切片。
# -*- coding: utf-8 -*-
from PIL import Image
from pylab import *
#读取图片并转为数组
im = array(Image.open("./source/test.jpg"))
#输出数组的各维度长度以及类型
print im.shape,im.dtype
#输出位于坐标100,100,颜色通道为r的像素值
print im[100,100,0]
#输出坐标100,100的rgb值
print im[100,100]及类型
print im.shape,im.dtype
运行结果:
(600, 500, 3) uint8
64
[ 64 117 195]
我们看到的是一个三维数组,分别代表横坐标,纵坐标和颜色通道。
我们可以通过数组把红蓝通道交换
# -*- coding: utf-8 -*-
from PIL import Image
from pylab import *
#读取图片并转为数组
im = array(Image.open("./source/test.jpg"))
#红色通道
r = im[:,:,0]
#交换红蓝通道并显示
im[:,:,0] = im[:,:,2]
im[:,:,2] = r
imshow(im)
show()
这里用到了numpy数组的切片方式,关于numpy的资料网上有很多,就不过多叙述了。
运行结果:
在转为数组的过程中我们可以设定数据类型,同时灰度图的图像数组也是有意义的:
# -*- coding: utf-8 -*-
from PIL import Image
from pylab import *
#读取图片,灰度化,并转为数组
im = array(Image.open("./source/test.jpg").convert('L'),'f')
#输出数组的各维度长度以及类型
print im.shape,im.dtype
#输出坐标100,100的值
print im[100,100]
运行结果:
(600, 500) float32
110.0
额外的参数‘f'将数组的数据类型转为浮点数
由于灰度图没有颜色信息,所以形状元组只有两个数值
*array()变换的相反操作可以使用PIL的fromarray()完成,如im = Image.fromarray(im)
图像数组的简单应用——灰度变换:
灰度图像:
灰度数字图像是每个像素只有一个采样颜色的图像。这类图像通常显示为从最暗黑色到最亮的白色的灰度。
可以通过下面几种方法,将图像转换为灰度:
1.浮点算法:Gray=R*0.3+G*0.59+B*0.11
2.整数方法:Gray=(R*30+G*59+B*11)/100
3.移位方法:Gray =(R*76+G*151+B*28)>>8;
4.平均值法:Gray=(R+G+B)/3;
5.仅取绿色:Gray=G;
通过上述任一种方法求得Gray后,将原来的RGB(R,G,B)中的R,G,B统一用Gray替换,形成新的颜色RGB(Gray,Gray,Gray),用它替换原来的RGB(R,G,B)就是灰度图了。
之前已经使用过很多次了,使用python可以通过使用convert(‘L')来获得灰度图
灰度变换:
将图像读入 NumPy 数组对象后,我们可以对它们执行任意数学操作。一个简单的例子就是图像的灰度变换。即任意函数 f ,它将 0…255 区间(或者 0…1 区间)映射到自身。
下面程序中有一些简单的灰度变换:
#-*- coding: utf-8 -*-
from PIL import Image
from pylab import *
#读取图片,灰度化,并转为数组
im = array(Image.open("./source/test.jpg").convert('L'))
im2 = 255 - im # 对图像进行反相处理
im3 = (100.0/255) * im + 100 # 将图像像素值变换到 100...200 区间
im4 = 255.0 * (im/255.0)**2 # 对图像像素值求平方后得到的图像(二次函数变换,使较暗的像素值变得更小)
#2x2显示结果 使用第一个显示原灰度图
subplot(221)
title('f(x) = x')
gray()
imshow(im)
#2x2显示结果 使用第二个显示反相图
subplot(222)
title('f(x) = 255 - x')
gray()
imshow(im2)
#2x2显示结果 使用第三个显示100-200图
subplot(223)
title('f(x) = (100/255)*x + 100')
gray()
imshow(im3)
#2x2显示结果 使用第四个显示二次函数变换图
subplot(224)
title('f(x) =255 *(x/255)^2')
gray()
imshow(im4)
#输出图中的最大和最小像素值
print int(im.min()),int(im.max())
print int(im2.min()),int(im2.max())
print int(im3.min()),int(im3.max())
print int(im4.min()),int(im4.max())
show()
运行结果:
0 255
0 255
100 200
0 255
可以比较明显的看到灰度变换的结果,,第二张图被反相显示,第三张图像的暗部变亮,亮部变暗,其值被限制在100到200之间,其中最后一张图像通过二次函数变换使较暗的像素值变得更暗。
结语:
本篇介绍了python使用图像数组去进行图像操作的过程,包括几个简单的实例,通过数组我们可以对图像进行任意数学操作,是图像变形、图像分类、图像聚类等的基础,希望我的博客对大家有所帮助
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20