
机器学习和 AI 领域必须了解的工具
关于数据科学,工具可能并不是那么热门的话题。人们似乎更关注最新的聊天机器人技术以及深度学习框架。
但这显然是不合理的。为什么不花些时间,挑选合适的工具呢?毕竟好的工具能够让你事半功倍。在本文中介绍了机器学习和 AI 方面的优质工具。
应该使用哪种语言?
这是一个有争议的问题。存在很多不同的观点。我个人的观点可能不那么常见,我认为越多越好。你应该同时使用 R 语言和 Python。
为什么?R语言更擅长数据可视化,并且有大量的统计数据包。另一方面,Python可以帮助你将模型部署生产,并更好地与团队中其他开发人员合作。
基本的软件包
我们应该充分利用的优秀开源社区。首先让我们回顾一下数据科学工作的主要流程。
典型的机器学习工作流程
最重要的步骤是:数据获取、数据清洗、可视化、建模、沟通。这些过程都需要用到库。
针对数据清洗,R语言中有一个出色的包——dplyr。无可否认,它的语法有些奇怪。注意 %>% 与* nix中的(|)运算符的工作原理相同,前一个操作的输出成为下一个操作的输入。这样,只需几行代码,你就可以构建相当复杂且可读的数据清洗操作。
另一方面,Python中可以用到Pandas。这个库很大程度上借鉴了R语言,特别是数据框的概念(当中行是观测,列是特征)。这需要一定的学习过程,但在习惯了之后,你可以在数据处理中做很多事情(甚至可以直接写入数据库)。
针对数据可视化,R语言中有ggplot2和plotly。ggplot2 非常强大,但级别较低。同样它的语法很奇怪,你需要通过图形语法来进行理解。plotly是一个较新的库,具有 ggplot 的功能,只需要一行代码就能进行交互。
Python中进行可视化的基础包是 matplotlib。但它的语法有些奇怪,默认颜色也不那么理想,因此我建议你使用新的seaborn软件包。Python缺少对模型性能的可视化,这里可以使用 yellowbrick 解决。你可以使用它来创建漂亮的图表分类器进行评估,查看特征,甚至绘制文本模型。
使用 seaborn 对 iris 数据集进行绘制
API
使用R语言进行机器学习常常会遇到一个问题。几乎所有模型都有不同的API,除非你记住所有的内容,如果你只想测试不同算法,那么就需要打开好几个文档标签。这个缺陷可以用 caret 和 mlr 解决,后者较新。我推荐用mlr,因为它更结构化,维护也更积极。而且功能强大,具有分解数据、训练、预测和性能评估功能。
Python中相应的库是scikit-learn。这也是我最喜欢的库,同时 scikit-learn 也备受一些科技公司的青睐 。它有一致的API,超过150种算法(包括神经网络),出色的文档,主动维护和教程。
Python中的ROC/AUC图,使用yellowbrick
集成开发环境
对于R语言来说,RStudio 是一个非常棒的工具,而且没有其他的竞争工具。我们希望在Python中找到相应的工具,我筛选了十几个(Spyder,PyCharm,Rodeo,spacemacs,Visual Studio,Canopy等等),主要推荐当中的两个工具:Jupyter Lab和Atom + Hydrogen。
Jupyter Lab很棒。但它仍然继承了Jupyter Notebook 中存在的一些缺点,比如单元状态,安全性,以及最严重的VCS集成问题。出于这个原因,我建议使用Atom + Hydrogen。你可以用它完成各种数据科学任务,比如检查数据框和变量,绘图等。
Atom + Hydrogen
EDA 工具
为什么需要?在数据科学过程中,尤其是起步阶段,我们需要快速地探索数据。在进行可视化之前,我们需要探索,并通过最少的技术投入来实现。因此写一大堆 seaborn、ggplot 代码并不是最佳选择,你需要使用 GUI 界面。因为不涉及任何代码,业务人员也可以使用。有两个非常棒的跨平台工具,并且免费——Past和Orange。前者更侧重于统计分析,后者更侧重于建模。两者都可以做很棒的数据可视化,因此完全符合我们的目标。
用Orange你能够进行的操作
结语
通过对工具进行优化,你能够更高效地完成数据分析工作(但也不要以此为借口不去工作哦)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20