大量研究结果表明人类通过图形获取信息的速度比通过阅读文字获取信息的速度要快很多,那么将数字以可视化的形式展示出来还有其它什么好处,本文详细列举了7种优势。以下为译文。
数据可视化是指以饼状图等图形的方式展示数据。这帮助用户能够更快地识别模式。交互式可视化能够让决策者深入了解细节层次。这种展示方式的改变使得用户可以查看分析背后的事实。
以下是数据可视化影响企业做决策和战略调整的七种方式。
人脑对视觉信息的处理要比书面信息容易得多。使用图表来总结复杂的数据,可以确保对关系的理解要比那些混乱的电子表格更快。
这提供了一种非常清晰的沟通方式,使业务领导者能够更快地理解和处理他们的信息。大数据可视化工具可以提供实时信息,使利益相关者更容易对整个企业进行评估。对市场变化更快的调整和对新机会的快速识别是每个行业的竞争优势。
向高级管理人员提交的许多业务报告都是规范化的文档,这些文档经常被静态表格和各种图表类型所夸大。也正是因为它制作的太过于详细了,以致于那些高管人员也没办法记住这些内容,因此对于他们来说是不需要看到太详细的信息。
然而,来自大数据可视化工具的报告使我们能够用一些简短的图形就能体现那些复杂信息,甚至单个图形也能做到。决策者可以通过交互元素以及类似于热图、fever charts等新的可视化工具,轻松地解释各种不同的数据源。丰富但有意义的图形有助于让忙碌的主管和业务伙伴了解问题和未决的计划。
大数据可视化的一个好处是,它允许用户去跟踪运营和整体业务性能之间的连接。在竞争环境中,找到业务功能和市场性能之间的相关性是至关重要的。
例如,一家软件公司的执行销售总监可能会立即在条形图中看到,他们的旗舰产品在西南地区的销售额下降了8%。然后,主管可以深入了解这些差异发生在哪里,并开始制定计划。通过这种方式,数据可视化可以让管理人员立即发现问题并采取行动。
现在已经收集到的消费者行为的数据量可以为适应性强的公司带来许多新的机遇。然而,这需要他们不断地收集和分析这些信息。通过使用大数据可视化来监控关键指标,企业领导人可以更容易发现各种大数据集的市场变化和趋势。
数据可视化的主要好处是它及时带来了风险变化。但与静态图表不同,交互式数据可视化鼓励用户探索甚至操纵数据,以发现其他因素。这就为使用分析提供了更好的意见。
例如,大型数据可视化工具可以向船只制造商展示其大型工艺的销售下降。这可能是由于一系列原因造成的。但团队成员积极探索相关问题,并将其与实际的船销售联系起来,可以找出根源,并找到减少其影响的方法,以推动更多的销售。
大数据可视化的一个优点是它提供了一种现成的方法来从数据中讲述故事。热图可以在多个地理区域显示产品性能的发展,使用户更容易看到性能良好或表现不佳的产品。这使得高管们可以深入到特定的地点,看看哪些地方做得好,哪些做得不好。
他们可能会认识到,瞄准较高收入市场的细分市场并不会销售价格更高的产品,或者传统的清洁产品销售比环保绿色产品更不受欢迎。这些见解可以被用来集思广益,头脑风暴,以支持更高的销售。
大数据可视化工具提供了一种更有效的使用操作型数据的方法。对于更大多数的商业领袖来说,实时性能和市场指标的变化更容易识别和应对。
围绕机器学习的所有炒作都快将变成现实了。除了一些大公司,比如亚马逊、谷歌正在利用机器学习来消除垃圾邮件,Pinterest利用机器学习向用户展示相关内容,Yelp使用机器学习来整理用户上传的照片。甚至是Disqus这样的公司也在使用机器学习来清除垃圾信息。现在就准备开始将机器学习应用到你自己的或者客户的业务领域里面去吧。
Home Depot使用机器学习来帮助用户更快地找到产品,甚至像Lyst这样的小公司也使用机器学习来帮助客户找到任意一种查询的相关信息。
客户服务正被机器学习的能力所改变,它能够解释客户的电子邮件,并将其分类,以纠正公司内部的部门或区域。这也就意味着以后可能再也用不到电话沟通的方式了。
机器学习的未来是无限的。
1.动作更快
2.以建设性方式讨论结果
3.理解运营和结果之间的连接
4.接受新兴趋势
5.与数据交互
6.创建新的讨论
7.机器学习:来吧,来吧
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21