一、SPSS数据分析的流程
二、SPSS特性
易用性强:操作界面极为友好,操作简单
良好的帮助系统和自学系统
为高级用户提高编程能力
功能强大:成熟的统计过程
完美的图形处理功能
提供多种数据准备技术
兼容性好:数据输入:Excel、lotus、Oracle、SQLserver、access、 dBASE、文本
数据输出:Word、HTML、XML、Excel、PowerPoint、PDF
三、数据的编辑
(一)常量
1、数值型常量:除了普通写法外还可以用科学计数法,如:1.3E18;
2、字符型常量:用单引号或双引号括起来如果字符中包含单引号,则必须使用双引号;
3、日期常量:日期个数的数据,一般需要使用日期函数进行转换;
(二)变量
1、变量名长度不能超过8;
2、三种基本的类型:数值、字符和日期;
3、可以在variableview界面设定变量的长度及小数位、变量的描述、变量值的描述、missing值、显示宽度、对齐方式和变量的测度方式;
(三)变量的测试方式
1、Scale:定距变量,如:身高、体重等;
2、Ordinal:定序变量,如:教育程度、级别等;
3、Nominal:定类变量,如:性别、民族等;
(四)操作符与表达式
1、三种基本的运算:数学、关系和逻辑
2、数学运算符:+– * / ** ()
3、关系运算符:>>= < <= = ~=
4、逻辑运算符:&(AND)|(OR) ~(NOT)
5、三种运算对应三种表达式
(五)常用的数据操作命令
1、Data->SortCases
2、Transform->RankCases
3、Transform->Count
4、Transform->Recode
5、Transform->Automatic Recode
6、Transform->Compute
7、Data->Transpose
8、Data->Split Files
9、Data->Merge Files
(六)Compute
1、数值型:computenum1=value.
2、字符型:StringA(a11).compute a=’hello world’.
3、日期型:computedata1=date.mdy(month,day, year).
(七)Recode
1、recodevariable name(old value=new value).
2、recodevariable name(old value=new value) into new variable name.
3、字符型变量使用auto recode
(八)Splitfile
1、有的时候需要对变量做些分组的分析,但一些分析方法并不提供分组变量的设置选项这就需要用到Split file命令;
例如使用 Descriptives 做描述性分析,如果想分年龄做分析,这样就可以用年龄变量做为分组变量;
2、可以看到这里的Split其实是分组,而不是拆分文件;
3、analyzeall case分析所有的样本,不产生分组;
4、comparegroups产生对比分析组;
5、output by groups分组输入分析结果;
(九)MergeFile
1、add cases合并变量相同,但是case不同的文件;
2、addvariables合并变量不同,case相同的文件这里的变量不同可以是部分的变量不同,case相同也可以是一个文件的case是另外一个文件的子集;
(十)数据的分类汇总
1、使用Aggregate命令
2、指定分类变量对观测量进行分组,对每组观测量的各变量求描述统计量;
3、检查重复的数据
4、使用identifyduplicate cases
5、数据的加权
6、使用weightcase
7、选取一定的case进行分析
8、使用selectcases:在对数据的子集进行分析的时候需要用到这个命令;
(十一)常用的数学函
1、取绝对值:abs(数字型表达式)
2、求余数函数:mod(数字型表达式,模数),模数不能为0该函数在需要对某一变量求模数的余数时使用,如果对一个顺序编号或自然数序列求模数的余数,可将该序列按模数等距分类,从而实行等距抽样;
3、四舍五入函数:rnd(数字型表达式)
4、开方函数:sqrt(数字型表达式)
用SPSS做数据分析,快速入门数据分析师行业,就在经管之家SPSS数据分析师认证培训:
培训时间:北京:2018年1月6-7日,13-14日【四天周末班】;11-14日(四天连续班)
培训地点:北京市海淀区厂洼街3号丹龙大厦B座3018
授课安排:上午9:00至12:00; 下午1:30至4:30; 答疑4:30至5:00
培训费用:现场:3600元/人;全日制学生2800元/人(差旅及住宿费用自理);
在线直播:1900元/人
证书费用:400元,可以自愿申请工信部数据分析师证书
培训优惠(后三项优惠不叠加)
1、赠送SPSS数据统计分析师视频课程。
2、现场班老学员可以享受9折优惠。
3、同一机构3人以上报名,9折优惠。
4、同一机构6人以上报名,8折优惠。
讲师介绍
丁亚军、 数据分析总监,任职于南京上度市场咨询有限公司,SAS、SPSS统计学讲师,中国学习路径图国际中心技术顾问。曾参与2012国家宏观经济预测、中国城镇居民家庭投资调查、泸州老窖目标管理与绩效考核等大型数据处理项目,具有丰富的数据处理经验
课程大纲
1.SPSS的介绍
1.1 实例演示。
1.2 spss的特点。
1.3 spss界面介绍(综合设置、help帮助介绍)。
1.4 spss数据变量详解:变量类型、缺失值、变量测量等。
2.数据的输入与保存
2.1 数据获取:
2.1.1 单选题、多选题与开放题的数据的录入。
2.1.2 spss不同文件格式及外部数据(非spss数据格式)的导入。
2.2 个体水平数据集(宽型数据)与测量水平(长型数据)数据集的异同。
3. 数据预分析
3.1 数据清理
3.1.1 数据的选择
3.1.2 数据的合并
3.1.3 数据的拆分
3.1.4 检查异常值
3.1.5 个案的加权
3.1.6 缺失值
3.2 新变量生成,SPSS函数
3.3 使用SPSS变换数据结构——转置和重组
3.4 常用的描述性统计分析功能
3.4.1 频率过程
3.4.2 描述过程
3.4.3 探索过程
3.5 使用SPSS绘制常用统计图形
3.5.1散点图
3.5.2条图
3.5.3控制图
3.5.4 ROC曲线
4. 数据分析
4.1 假设检验
4.1.1 假设检验的原理
4.1.2 了解均值的显著性检验
4.2 差异分析及相关分析过程
4.2.1 均值过程、T检验与方差分析
4.2.2 案例分析1:产品质量差异分析
4.2.2 卡方分析
4.2.2.1 卡方分析原理
4.2.2.2 案例分析2:企业选址的区位分析
4.2.3 相关分析
4.2.4 偏相关分析
4.2.5 距离分析
4.3 回归分析基础
4.3.1 简单回归分析
4.3.2 多元回归分析
4.3.2.1 逐步回归
4.3.2.2回归预测与残差分析
4.3.2.3方差不齐与强影响点的处理—加权最小二乘法与最小一乘法
4.3.2.4共线性的处理—岭回归(ridge regression)
4.3.2.5注意问题
4.3.2.6案例分析3:产品合格率的影响因素及其预测分析
4.3.3 logistic回归分析
案例分析4:客户违约信息研究
4.3.4 曲线估计
4.4 因子分析与聚类分析
4.4.1 主成分分析与因子分析
4.4.2 快速聚类法与聚类法
4.4.3 判别分析
4.4.4案例分析5:客户购买力信息研究
4.5 对应分析
4.5.1对应分析原理
4.5.2简单对应分析
4.5.3多元对应分析(最优尺度分析)
4.5.4案例分析6:企业选址的区位分析(案例2)
4.6 bootstrap技术
4.6.1 bootstrap原理
4.6.2 bootstrap应用
4.6.3 bootstrap功能在SPSS中的实现
5. 使用SPSS制作数据分析的统计报表
5.1 制作报表前对变量的检查
5.2 制作报表的中对不同类型的数据处理
5.3 报表生成功能与其他选项的区别
5.4 注意事项
6. SPSS编程操作
6.1 程序编辑窗口操作入门
6.2 基本语句
6.3 结构化语句
6.4 实例讲解spss编程
课程特色
1、结构有层次、内容全面、通俗易懂,通过SPSS工具一步步带您走进数据分析的世界,探索数据分析的价值,让数据分析变得既简单又有趣。
2、从工作实际问题出发,总结并提炼工作中SPSS经常用到并且非常实用的数据处理、数据分析实战方法和技巧。
3、力求通俗易懂的介绍数据分析方法与技巧,在不影响学习理解的前提下,尽可能避免使用晦涩难懂的统计术语或模型公式
培训对象
1、从事企业数据分析、数据挖掘及相关工作的决策分析、工程技术人员;
2、需要进行大数据统计分析的高校、科研院所的科技工作者;
3、打算从事数据统计分析的在校生、在职人员。
报名流程及咨询
1. 点击“立即报名”提交报名信息;
2. 给予反馈,确认报名信息;
3. 网上交费
4. 开课前一周发送培训教室路线图,培训现场领取发票
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16