奇异值分解SVD的理解与应用
为更好的理解这篇文章,现在这里列出几个文中出现的概念,想要更深的理解这些概念,可以看我的另一篇文章:关于特征值的理解。
向量的内积:两向量a=[a1,a2,…,an]和b=[b1,b2,…,bn],其内积为 a⋅b=a1b1+a2b2+……+anbn。
特征值与特征向量:对一个m×m矩阵A和向量x,如果存在λ使得下式成立,Ax=λx,则称λ为矩阵A的特征值,x称为矩阵的特征向量。
对角矩阵:对角矩阵是除对角线外所有元素都为零的方阵。
正交矩阵:正交是一个方块矩阵V,行与列皆为正交的单位向量,即Vn×nVTn×n=In,使得该矩阵的转置矩阵为其逆矩阵,VT=V−1。
直接进入正题,矩阵当中有一个非常著名的理论,即:
一个n×n的对称矩阵A可以分解为:A=VDVT。其中,V是一个n×n正交矩阵,并且列向量是矩阵A的特征向量;D是一个n×n对角矩阵,并且对角线上的值为对应特征向量的特征值。
上面的理论是针对一个n×n的对称矩阵,那么对于任意的一个m×n的矩阵A,有没有类似的表达方法呢。答案是肯定的,svd正是用来解决这个问题的。
对任意一个m×n的矩阵A,可以将其分解为:A=USVT。其中U是一个m×m的正交矩阵;S是一个m×n的矩阵,其主对角元素≥0,非主对角元素均为0;V是一个n×n的正交矩阵。
![]()
关于svd的证明过程,似乎更多是数值上的工作,本文想给出更多intuitive上的理解。想要了解证明的可以参考这篇论文:Kalman D. A singularly valuable decomposition: the SVD of a matrix。
这样,对任意一个矩阵,我都可以分解成三个矩阵的内积。让我们看一下它有什么神奇的性质。
AAT=USVTVSTUT=USSTUT=UDUT(1)
由于V是一个正交矩阵,VT=V−1,所以VT*V=I。S只有主对角元素不为0,那么SST的结果为一个m×m的对角矩阵D。而虽然A是任意的一个m×n的矩阵,但AAT是一个m×m的对称矩阵。这样一看,AAT=UDUT是不是和前面那个理论非常相似。那么U的列向量应该是对称矩阵AAT的特征向量,D应该是一个对角矩阵,且对角线上值是对称矩阵AAT的特征值。
ATA=VSTUTUSVT=VSTSVT=VWVT(2)
同样,V的列向量则是对称矩阵ATA的特征向量,而W则是一个n×n的对角矩阵。这里W和D实际上是相同的,只是对角线上后面的0的数量不一样。
![]()
可以看出,矩阵S主对角线上的值,实际上是对称矩阵AAT或ATA特征值的平方根。
所以,实际上svd是一个矩阵分解方法,对于任意一个m×n的矩阵A,svd都可以将其分解成为A=USVT。其中矩阵U的列向量是对称矩阵AAT的特征向量,称作左奇异矩阵;矩阵V的的列向量是对称矩阵ATA的特征向量;S是一个m×n的矩阵,主对角线上的值是对称矩阵AAT或ATA特征值的平方根,称作奇异值,且非对角线上的值为0.
不知道写到这里,大家是不是对svd有了一个比较具体的印象。然而,上面只是从数学上解释了svd的构成,我们好奇的是,从很多地方,我们都听到了svd,即使如上面所述,它长的是这个样子,但是我们它到底可以用来做什么事情呢?
下面我们举几个svd的实际应用,加深我们对它的理解。
1)有损的数据压缩
假设我们有一个m×n的矩阵A,它表示一组数据
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27