奇异值分解SVD的理解与应用
为更好的理解这篇文章,现在这里列出几个文中出现的概念,想要更深的理解这些概念,可以看我的另一篇文章:关于特征值的理解。
向量的内积:两向量a=[a1,a2,…,an]和b=[b1,b2,…,bn],其内积为 a⋅b=a1b1+a2b2+……+anbn。
特征值与特征向量:对一个m×m矩阵A和向量x,如果存在λ使得下式成立,Ax=λx,则称λ为矩阵A的特征值,x称为矩阵的特征向量。
对角矩阵:对角矩阵是除对角线外所有元素都为零的方阵。
正交矩阵:正交是一个方块矩阵V,行与列皆为正交的单位向量,即Vn×nVTn×n=In,使得该矩阵的转置矩阵为其逆矩阵,VT=V−1。
直接进入正题,矩阵当中有一个非常著名的理论,即:
一个n×n的对称矩阵A可以分解为:A=VDVT。其中,V是一个n×n正交矩阵,并且列向量是矩阵A的特征向量;D是一个n×n对角矩阵,并且对角线上的值为对应特征向量的特征值。
上面的理论是针对一个n×n的对称矩阵,那么对于任意的一个m×n的矩阵A,有没有类似的表达方法呢。答案是肯定的,svd正是用来解决这个问题的。
对任意一个m×n的矩阵A,可以将其分解为:A=USVT。其中U是一个m×m的正交矩阵;S是一个m×n的矩阵,其主对角元素≥0,非主对角元素均为0;V是一个n×n的正交矩阵。
![]()
关于svd的证明过程,似乎更多是数值上的工作,本文想给出更多intuitive上的理解。想要了解证明的可以参考这篇论文:Kalman D. A singularly valuable decomposition: the SVD of a matrix。
这样,对任意一个矩阵,我都可以分解成三个矩阵的内积。让我们看一下它有什么神奇的性质。
AAT=USVTVSTUT=USSTUT=UDUT(1)
由于V是一个正交矩阵,VT=V−1,所以VT*V=I。S只有主对角元素不为0,那么SST的结果为一个m×m的对角矩阵D。而虽然A是任意的一个m×n的矩阵,但AAT是一个m×m的对称矩阵。这样一看,AAT=UDUT是不是和前面那个理论非常相似。那么U的列向量应该是对称矩阵AAT的特征向量,D应该是一个对角矩阵,且对角线上值是对称矩阵AAT的特征值。
ATA=VSTUTUSVT=VSTSVT=VWVT(2)
同样,V的列向量则是对称矩阵ATA的特征向量,而W则是一个n×n的对角矩阵。这里W和D实际上是相同的,只是对角线上后面的0的数量不一样。
![]()
可以看出,矩阵S主对角线上的值,实际上是对称矩阵AAT或ATA特征值的平方根。
所以,实际上svd是一个矩阵分解方法,对于任意一个m×n的矩阵A,svd都可以将其分解成为A=USVT。其中矩阵U的列向量是对称矩阵AAT的特征向量,称作左奇异矩阵;矩阵V的的列向量是对称矩阵ATA的特征向量;S是一个m×n的矩阵,主对角线上的值是对称矩阵AAT或ATA特征值的平方根,称作奇异值,且非对角线上的值为0.
不知道写到这里,大家是不是对svd有了一个比较具体的印象。然而,上面只是从数学上解释了svd的构成,我们好奇的是,从很多地方,我们都听到了svd,即使如上面所述,它长的是这个样子,但是我们它到底可以用来做什么事情呢?
下面我们举几个svd的实际应用,加深我们对它的理解。
1)有损的数据压缩
假设我们有一个m×n的矩阵A,它表示一组数据
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31