奇异值分解SVD的理解与应用
为更好的理解这篇文章,现在这里列出几个文中出现的概念,想要更深的理解这些概念,可以看我的另一篇文章:关于特征值的理解。
向量的内积:两向量a=[a1,a2,…,an]和b=[b1,b2,…,bn],其内积为 a⋅b=a1b1+a2b2+……+anbn。
特征值与特征向量:对一个m×m矩阵A和向量x,如果存在λ使得下式成立,Ax=λx,则称λ为矩阵A的特征值,x称为矩阵的特征向量。
对角矩阵:对角矩阵是除对角线外所有元素都为零的方阵。
正交矩阵:正交是一个方块矩阵V,行与列皆为正交的单位向量,即Vn×nVTn×n=In,使得该矩阵的转置矩阵为其逆矩阵,VT=V−1。
直接进入正题,矩阵当中有一个非常著名的理论,即:
一个n×n的对称矩阵A可以分解为:A=VDVT。其中,V是一个n×n正交矩阵,并且列向量是矩阵A的特征向量;D是一个n×n对角矩阵,并且对角线上的值为对应特征向量的特征值。
上面的理论是针对一个n×n的对称矩阵,那么对于任意的一个m×n的矩阵A,有没有类似的表达方法呢。答案是肯定的,svd正是用来解决这个问题的。
对任意一个m×n的矩阵A,可以将其分解为:A=USVT。其中U是一个m×m的正交矩阵;S是一个m×n的矩阵,其主对角元素≥0,非主对角元素均为0;V是一个n×n的正交矩阵。
关于svd的证明过程,似乎更多是数值上的工作,本文想给出更多intuitive上的理解。想要了解证明的可以参考这篇论文:Kalman D. A singularly valuable decomposition: the SVD of a matrix。
这样,对任意一个矩阵,我都可以分解成三个矩阵的内积。让我们看一下它有什么神奇的性质。
AAT=USVTVSTUT=USSTUT=UDUT(1)
由于V是一个正交矩阵,VT=V−1,所以VT*V=I。S只有主对角元素不为0,那么SST的结果为一个m×m的对角矩阵D。而虽然A是任意的一个m×n的矩阵,但AAT是一个m×m的对称矩阵。这样一看,AAT=UDUT是不是和前面那个理论非常相似。那么U的列向量应该是对称矩阵AAT的特征向量,D应该是一个对角矩阵,且对角线上值是对称矩阵AAT的特征值。
ATA=VSTUTUSVT=VSTSVT=VWVT(2)
同样,V的列向量则是对称矩阵ATA的特征向量,而W则是一个n×n的对角矩阵。这里W和D实际上是相同的,只是对角线上后面的0的数量不一样。
可以看出,矩阵S主对角线上的值,实际上是对称矩阵AAT或ATA特征值的平方根。
所以,实际上svd是一个矩阵分解方法,对于任意一个m×n的矩阵A,svd都可以将其分解成为A=USVT。其中矩阵U的列向量是对称矩阵AAT的特征向量,称作左奇异矩阵;矩阵V的的列向量是对称矩阵ATA的特征向量;S是一个m×n的矩阵,主对角线上的值是对称矩阵AAT或ATA特征值的平方根,称作奇异值,且非对角线上的值为0.
不知道写到这里,大家是不是对svd有了一个比较具体的印象。然而,上面只是从数学上解释了svd的构成,我们好奇的是,从很多地方,我们都听到了svd,即使如上面所述,它长的是这个样子,但是我们它到底可以用来做什么事情呢?
下面我们举几个svd的实际应用,加深我们对它的理解。
1)有损的数据压缩
假设我们有一个m×n的矩阵A,它表示一组数据
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30