大数据是仅次于互联网思维之外最热的词,大数据原来的意思是互联网或者移动互联网让人们收集数据变得更加方便,这种方便又可以直接转换为某种直观的相关把握,从而便于决策。
比如谷歌搜索里面趋势项目在印度应对疟疾的作用,谷歌比印度官方还更早地知道了疟疾扩散的路径和放大程度。还有一个著名的例子是百货公司的销售数据发现尿布和啤酒的相关关系,男人为自己的婴儿买尿布顺便会买几罐啤酒,那么正确的货品摆放是将尿布和啤酒放在一起,这样会提高销售额。
这些都是比较正面的例子,人们被这些例子所打动,觉得大数据真的很好很好,不需要深究因果,就可以做出正确的关联性判断,从而美化生活。
但是大数据在中国,尤其在中国最火爆的领域,比如手机、电商、娱乐等等诸多领域都变了味道,大数据变成了一种大造假,它的基本逻辑是,通过制造一个令人吃惊的数据,达到欺骗或者吆喝的目的,从而榨取整个社会残余的一点点信任。笔者觉得,中国大数据已经变成了互联网思维骗术的最核心部分。
举几个例子吧。比如一家著名的智能手机生产商,它们基本都是采取电商模式,不走任何线下渠道或者定制机,他们最常见的举动就是在双11或者自己的某某节上宣布,几秒之内就销售了多少部手机,一天之内就是百万部,它的手机永远都是秒内售磬,弄得没买到的人都不知道时间去了哪儿?
在苹果iPhone最热的时候,这家手机公司也跟苹果一样,采取粉丝大清早起来就排队的模式,弄得争议很大,因为买iPhone在美国也排队在欧洲也排队在亚洲也排队,几乎变成了一种全球化现象,大家都觉得这是真的。而这家手机商在中国玩雇佣排队,就令人感到很奇怪,所以有争议。这家不断进步的手机商也很聪明,随后将精力主要放在线上,开启了线上秒杀模型。
线上有几个特点,第一是节省店面成本;第二是收集需求,有需求才发货,这端不动那端也不动,很互联网思维。第三点没有人说,可以造交易量的假。比如发售手机100万部,预估兴奋的屌丝大约30万,那么70万部就可以自己买,通过账户打钱来买,因为买的是自己的东西,钱落入的账户也是自己的账户,在德隆时代的股票市场,这叫自买自卖自弹自唱。弄得很热火,也吸收小散进去看看。
当然,卖手机比弄股票还是厚道一些,无非是让潜在好奇的人也进去看看,觉得不错买一部,不至于套牢这么严重,况且人家手机的确很便宜。但这其中的内在道理是一样的,线上交易无论是天猫还是自己的电商平台,都是可以“造大数据”的。
业内基本都领会了这三点做法,笔者看到其他的一些国产手机商都开始学习这套模式,笔者有100%信心展望:未来各手机商宣布卖出的手机量之和肯定高于整体手机出货量,就像中国的GDP统计一样,各省统计出来的GDP之和,远远统计局做的总量抽样估计,这种宏观上的中国式统计景观,已经大面积地出现在微观企业的互联网思维中。
中国式大数据的核心关键词,除了展示自己的东西如何牛之外,主要是通过数据来影响消费者,达到数据操控和数据干扰的目的。
再简单举个例子,现在很多做电影电视或者做书的,都喜欢做一个预定的app,意思是如果观众读者先预定了电影票或者期书,那么到了真实购买阶段,是有很大的折扣的。但一般来说,他们都会将观众或者读者的数量弄得很高,制造出很红火的样子,他们的目的不是为了收集未来需求,而是要影响院线或者出版社:你看,观众和读者这么踊跃,意味着该片或者该书是非常牛的,你们院线或者出版社要拿出最好的放映资源或者出版推广资源来做——“大数据”变成了一种影响力或者操纵力。
在一些更草根的领域里面,大数据黑幕更是泛滥。现在最草根最惊愕的领域是自媒体融资领域,动不动一个小公号就宣布自己融资百万或者千万,估值上亿。当然,不否认这个世界的确存在很多傻钱,有些媒体人的资源的确还不错,融点小钱也不在话下,但是傻钱也不是你们想得那样。比如笔者亲自看到的案例是这样的:一个信息类的app项目估值,融资方的确给了点小钱,不到100万,但被吆喝成2千万,只占20%的股份,这意味着该项目估值已经达到了亿级,融资方是这么告诉该项目的创始人,100万省点花,够你们这点人干一年,你们要努力干,等未来市场更热一点,找一个更傻的人做B轮融资,就算成本价,也能算上1亿,大家都赚了。所以,现在这个估值钱可以少点,但口气绝不能小点。未来的盈利模式是有可能做大,但主要精力用于博傻。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28