
1.数据库的技术上,目前我们公司在研究hadoop分层数据库,具体了解不多;外面流行的NoSql非关系型数据库,像亚马逊、谷歌还有一些日本企业都有自己的NoSql数据库;
2.传统关系型数据库的优化,数据库层的优化和上层使用的优化。
数据库层:需要DBA进行优化,减少碎片,进行分区等;
使用层的优化,即优化SQL
从外界因素来看影响SQL有:CPU、RAM、Network、Disk
CPU:SQL的大量order by,大量group by,case when等都会很费CPU,需要CPU进行计算。是否可以使用汇总来减少此问题
RAM:查找的数据量过大,导致内存资源占用过多。
如无where的SQL,select *的SQL,全表扫描等;
频繁的update、insert都会影响内存,每次对SQL的解析都需要一定的时间和空间。采用绑定变量。
Network:过多的DB连接,频繁的DB开关,跨库的关联,大量数据的导出,复杂的SQL等。
Disk:
大数据量的表,建立索引,保证索引的有效性;
减少大表的insert和delete,会造成磁盘碎片,导致磁盘指针的不连续性;
大表的insert和delete会造成索引的失效,必要时先去掉索引再操作增删改;
索引其实是一张表,要保证其精简
索引的建立,最好用在易排序字段,如number,date等,勿varchar;
varchar字段尽量保持长度的一致性,宁可多给出空间;
减少磁盘的读取次数;
对大表禁止顺序性的全表扫描,使用索引;
减少disdinct,用unionall代替union;
Not like,<>,全模糊like,is null,is not null,not in都会使索引失效;
索引上不要使用任何函数,尽量在等号的另一头使用函数;
SQL的书写一致,减少解析时间;
减少嵌套子SQL,使用关联查询;
避免笛卡尔积连接;
避免使用*,数据库需要对*进行一次匹配,会消耗资源,而且并不一定所有的字段都要进行查询或者写入,写入时表结构变化还会导致出错,所以避免*;
全表删除,不要使用delete,使用truncate;
全表分页的效率较低,建议使用分步是分页;
3.在数据读取优化到一定程度后,代码上也可以进行很大的优化。
避免过多的开装箱,使用值类型;
对引用类型的集合,多使用泛型;
避免循环嵌套,和无休止的递归;
避免循环中建立大对象;
对大对象的释放;
4.逻辑上的优化
在需要查询大量数据的时候,可以使用分页;
分页影响到一些图标的产生时,可以借助汇总,先展示汇总信息和图标,然后在进行详情的钻取;
时间空间的相互替换。
5.对常用信息的本地化保存,如QQ第一次加载很慢,但后面登陆会很快。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03