大数据量高效导入数据库(以excel导入sqlserver为例)
最近正在做一个项目,要把excel中的数据导入到sqlserver数据库中,首先想到的就是insert,采用连接Excel对象的Microsoft.ACE.OLEDB.12.0接口引擎连接到excel,然后读取到DataTable中然后每次读取一个Row,insert到数据库表里,但是效率低的让人可怕,一旦数据量过大,卡的要死,我们测试数据是有24万条,文件大小14,249,487
字节(大概14MB),后来经过一番研究发现了SqlBulkCopy,至于SqlBulkCopy的详细介绍就不说了,都是文字描述,微软的直接MSDN就可以了,但是效率确实比insert效率高很多,这里我们就直接上代码吧:
[html] view plain copy
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Data.OleDb;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
namespace 读取excel到datagridview
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
private void Form1_Load(object sender, EventArgs e)
{
}
/// <summary>
/// 选择文件,并且读取excel中sheet
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private void button1_Click(object sender, EventArgs e)
{
try
{
//获取Excel文件路径和名称
OpenFileDialog odXls = new OpenFileDialog();
// 指定相应的打开文档的目录
odXls.InitialDirectory = "C://";
// 设置文件格式
odXls.Filter = "Excel files (*.xls)|*.xls|Excel files (*.xlsx)|*.xlsx";
odXls.FilterIndex = 2;
odXls.RestoreDirectory = true;
if (odXls.ShowDialog() == DialogResult.OK)
{
txtFilePath.Text = odXls.FileName;
OleDbConnection oledbConn = null;
string sConnString = "provider=Microsoft.ACE.OLEDB.12.0;data source=" + odXls.FileName + ";Extended Properties=Excel 12.0;Persist Security Info=False";
oledbConn = new OleDbConnection(sConnString);
oledbConn.Open();
DataTable dt = oledbConn.GetOleDbSchemaTable(OleDbSchemaGuid.Tables, new object[] { null, null, null, "TABLE" });
combox1.Items.Clear();
foreach (DataRow dr in dt.Rows)
{
//MessageBox.Show((String)dr["TABLE_NAME"]);
combox1.Items.Add((String)dr["TABLE_NAME"]);
}
if (combox1.Items.Count > 0)
combox1.SelectedIndex = 0;
}
}
catch (Exception Ex)
{
MessageBox.Show(Ex.Message);
richTextBox1.Text = Ex.Message;
}
}
/// <summary>
/// 读取文件具体内容
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private void button2_Click(object sender, EventArgs e)
{
string connectionString = @"Data Source=702-01;Initial Catalog=DBUser;Integrated Security=True";
OleDbConnection ole = null;
OleDbDataAdapter da = null;
DataTable dt = null;
string strConn = "Provider=Microsoft.ACE.OLEDB.12.0;"
+ "Data Source=" + txtFilePath.Text.Trim() + ";"
+ "Extended Properties=Excel 12.0";
string sTableName = combox1.Text.Trim();
string strExcel = "select * from [" + sTableName + "]";
try
{
ole = new OleDbConnection(strConn);
ole.Open();
da = new OleDbDataAdapter(strExcel, ole);
dt = new DataTable();
da.Fill(dt);
using (System.Data.SqlClient.SqlBulkCopy bcp = new System.Data.SqlClient.SqlBulkCopy(connectionString))
{
//bcp.SqlRowsCopied += new System.Data.SqlClient.SqlRowsCopiedEventHandler(bcp_SqlRowsCopied);
//bcp.SqlRowsCopied += new System.Data.SqlClient.SqlRowsCopiedEventHandler(bcp_SqlRowsCopied);
bcp.BatchSize = 1000;//每次传输的行数
// bcp.NotifyAfter = 1000;//进度提示的行数
bcp.DestinationTableName = "tb_bigdata";//目标表
bcp.WriteToServer(dt);
MessageBox.Show("导入完成!");
}
//为datagridview设置数据源
this.xlsExpData.DataSource = dt;
//设置每一列显示数据模式为AllCells
//for (int i = 0; i < dt.Columns.Count; i++)
//{
// xlsExpData.Columns[i].AutoSizeMode = DataGridViewAutoSizeColumnMode.AllCells;
//}
ole.Close();
}
catch (Exception Ex)
{
MessageBox.Show(Ex.Message);
}
finally
{
if (ole != null)
ole.Close();
}
}
//进度显示
void bcp_SqlRowsCopied(object sender, System.Data.SqlClient.SqlRowsCopiedEventArgs e)
{
this.Text = e.RowsCopied.ToString();
this.Update();
}
}
}
这里我们经过多次测试,将24万条数据导入到sqlserver中,因为目前手边没有可以测试的服务器就临时使用自己的计算机当做服务器进行测试,这里是我的电脑配置:
平均导入时间在20秒左右,上下不差1秒,执行时间和BatchSize设置也有关系,如果设置为100,则需要35秒左右,如果是真正的服务器的话相信执行时间会大大缩短,大家都知道服务器的处理事务能力比普通计算机要强大很多。
当然在本地使用时,效率是比insert高的,但是也有很多限制比如:
1、导入时会有排它意向锁,易死锁。
2、数据只能从服务器本地导入到本地服务器上的数据库中,无法从客户端将数据导入到远程服务器上等等
那么可能大家会担心了,这样也不行啊,客户端不能导入到远程服务器上很不方便的,那么我又研究了一种实现的方式,就是采用数据适配器,DataSet实现数据导入,我们可以将数据文件先导入到DataTable或者DataSet中,然后提交回数据库,这样也实现了数据导入,这样就不会有上边的限制了,至于具体代码就不说了,相信大家应该都会,就是ADO.NET所谓基本对象的应用,如果真的有需要具体代码的可以联系我,但是导入过程中会瞬间部分内存占用,但是占用的内存应该没啥问题,不会有什么影响。
所以我们可以视情况而定,具体选择哪种导入方式,灵活运用,提高工作效率,当然这里由于自身能力原因,暂时只研究了这几种方式,一定还有效率更高的导入方式,这里我会继续研究,如果有新进展一定及时更新,如果有需要请关注或者私信我,大家一起学习,一起进步,希望会帮助到大家。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16