大数据量高效导入数据库(以excel导入sqlserver为例)
最近正在做一个项目,要把excel中的数据导入到sqlserver数据库中,首先想到的就是insert,采用连接Excel对象的Microsoft.ACE.OLEDB.12.0接口引擎连接到excel,然后读取到DataTable中然后每次读取一个Row,insert到数据库表里,但是效率低的让人可怕,一旦数据量过大,卡的要死,我们测试数据是有24万条,文件大小14,249,487
字节(大概14MB),后来经过一番研究发现了SqlBulkCopy,至于SqlBulkCopy的详细介绍就不说了,都是文字描述,微软的直接MSDN就可以了,但是效率确实比insert效率高很多,这里我们就直接上代码吧:
[html] view plain copy
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Data.OleDb;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
namespace 读取excel到datagridview
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
private void Form1_Load(object sender, EventArgs e)
{
}
/// <summary>
/// 选择文件,并且读取excel中sheet
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private void button1_Click(object sender, EventArgs e)
{
try
{
//获取Excel文件路径和名称
OpenFileDialog odXls = new OpenFileDialog();
// 指定相应的打开文档的目录
odXls.InitialDirectory = "C://";
// 设置文件格式
odXls.Filter = "Excel files (*.xls)|*.xls|Excel files (*.xlsx)|*.xlsx";
odXls.FilterIndex = 2;
odXls.RestoreDirectory = true;
if (odXls.ShowDialog() == DialogResult.OK)
{
txtFilePath.Text = odXls.FileName;
OleDbConnection oledbConn = null;
string sConnString = "provider=Microsoft.ACE.OLEDB.12.0;data source=" + odXls.FileName + ";Extended Properties=Excel 12.0;Persist Security Info=False";
oledbConn = new OleDbConnection(sConnString);
oledbConn.Open();
DataTable dt = oledbConn.GetOleDbSchemaTable(OleDbSchemaGuid.Tables, new object[] { null, null, null, "TABLE" });
combox1.Items.Clear();
foreach (DataRow dr in dt.Rows)
{
//MessageBox.Show((String)dr["TABLE_NAME"]);
combox1.Items.Add((String)dr["TABLE_NAME"]);
}
if (combox1.Items.Count > 0)
combox1.SelectedIndex = 0;
}
}
catch (Exception Ex)
{
MessageBox.Show(Ex.Message);
richTextBox1.Text = Ex.Message;
}
}
/// <summary>
/// 读取文件具体内容
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private void button2_Click(object sender, EventArgs e)
{
string connectionString = @"Data Source=702-01;Initial Catalog=DBUser;Integrated Security=True";
OleDbConnection ole = null;
OleDbDataAdapter da = null;
DataTable dt = null;
string strConn = "Provider=Microsoft.ACE.OLEDB.12.0;"
+ "Data Source=" + txtFilePath.Text.Trim() + ";"
+ "Extended Properties=Excel 12.0";
string sTableName = combox1.Text.Trim();
string strExcel = "select * from [" + sTableName + "]";
try
{
ole = new OleDbConnection(strConn);
ole.Open();
da = new OleDbDataAdapter(strExcel, ole);
dt = new DataTable();
da.Fill(dt);
using (System.Data.SqlClient.SqlBulkCopy bcp = new System.Data.SqlClient.SqlBulkCopy(connectionString))
{
//bcp.SqlRowsCopied += new System.Data.SqlClient.SqlRowsCopiedEventHandler(bcp_SqlRowsCopied);
//bcp.SqlRowsCopied += new System.Data.SqlClient.SqlRowsCopiedEventHandler(bcp_SqlRowsCopied);
bcp.BatchSize = 1000;//每次传输的行数
// bcp.NotifyAfter = 1000;//进度提示的行数
bcp.DestinationTableName = "tb_bigdata";//目标表
bcp.WriteToServer(dt);
MessageBox.Show("导入完成!");
}
//为datagridview设置数据源
this.xlsExpData.DataSource = dt;
//设置每一列显示数据模式为AllCells
//for (int i = 0; i < dt.Columns.Count; i++)
//{
// xlsExpData.Columns[i].AutoSizeMode = DataGridViewAutoSizeColumnMode.AllCells;
//}
ole.Close();
}
catch (Exception Ex)
{
MessageBox.Show(Ex.Message);
}
finally
{
if (ole != null)
ole.Close();
}
}
//进度显示
void bcp_SqlRowsCopied(object sender, System.Data.SqlClient.SqlRowsCopiedEventArgs e)
{
this.Text = e.RowsCopied.ToString();
this.Update();
}
}
}
这里我们经过多次测试,将24万条数据导入到sqlserver中,因为目前手边没有可以测试的服务器就临时使用自己的计算机当做服务器进行测试,这里是我的电脑配置:
平均导入时间在20秒左右,上下不差1秒,执行时间和BatchSize设置也有关系,如果设置为100,则需要35秒左右,如果是真正的服务器的话相信执行时间会大大缩短,大家都知道服务器的处理事务能力比普通计算机要强大很多。
当然在本地使用时,效率是比insert高的,但是也有很多限制比如:
1、导入时会有排它意向锁,易死锁。
2、数据只能从服务器本地导入到本地服务器上的数据库中,无法从客户端将数据导入到远程服务器上等等
那么可能大家会担心了,这样也不行啊,客户端不能导入到远程服务器上很不方便的,那么我又研究了一种实现的方式,就是采用数据适配器,DataSet实现数据导入,我们可以将数据文件先导入到DataTable或者DataSet中,然后提交回数据库,这样也实现了数据导入,这样就不会有上边的限制了,至于具体代码就不说了,相信大家应该都会,就是ADO.NET所谓基本对象的应用,如果真的有需要具体代码的可以联系我,但是导入过程中会瞬间部分内存占用,但是占用的内存应该没啥问题,不会有什么影响。
所以我们可以视情况而定,具体选择哪种导入方式,灵活运用,提高工作效率,当然这里由于自身能力原因,暂时只研究了这几种方式,一定还有效率更高的导入方式,这里我会继续研究,如果有新进展一定及时更新,如果有需要请关注或者私信我,大家一起学习,一起进步,希望会帮助到大家。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13