
大数据量高效导入数据库(以excel导入sqlserver为例)
最近正在做一个项目,要把excel中的数据导入到sqlserver数据库中,首先想到的就是insert,采用连接Excel对象的Microsoft.ACE.OLEDB.12.0接口引擎连接到excel,然后读取到DataTable中然后每次读取一个Row,insert到数据库表里,但是效率低的让人可怕,一旦数据量过大,卡的要死,我们测试数据是有24万条,文件大小14,249,487
字节(大概14MB),后来经过一番研究发现了SqlBulkCopy,至于SqlBulkCopy的详细介绍就不说了,都是文字描述,微软的直接MSDN就可以了,但是效率确实比insert效率高很多,这里我们就直接上代码吧:
[html] view plain copy
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Data.OleDb;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
namespace 读取excel到datagridview
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
private void Form1_Load(object sender, EventArgs e)
{
}
/// <summary>
/// 选择文件,并且读取excel中sheet
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private void button1_Click(object sender, EventArgs e)
{
try
{
//获取Excel文件路径和名称
OpenFileDialog odXls = new OpenFileDialog();
// 指定相应的打开文档的目录
odXls.InitialDirectory = "C://";
// 设置文件格式
odXls.Filter = "Excel files (*.xls)|*.xls|Excel files (*.xlsx)|*.xlsx";
odXls.FilterIndex = 2;
odXls.RestoreDirectory = true;
if (odXls.ShowDialog() == DialogResult.OK)
{
txtFilePath.Text = odXls.FileName;
OleDbConnection oledbConn = null;
string sConnString = "provider=Microsoft.ACE.OLEDB.12.0;data source=" + odXls.FileName + ";Extended Properties=Excel 12.0;Persist Security Info=False";
oledbConn = new OleDbConnection(sConnString);
oledbConn.Open();
DataTable dt = oledbConn.GetOleDbSchemaTable(OleDbSchemaGuid.Tables, new object[] { null, null, null, "TABLE" });
combox1.Items.Clear();
foreach (DataRow dr in dt.Rows)
{
//MessageBox.Show((String)dr["TABLE_NAME"]);
combox1.Items.Add((String)dr["TABLE_NAME"]);
}
if (combox1.Items.Count > 0)
combox1.SelectedIndex = 0;
}
}
catch (Exception Ex)
{
MessageBox.Show(Ex.Message);
richTextBox1.Text = Ex.Message;
}
}
/// <summary>
/// 读取文件具体内容
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private void button2_Click(object sender, EventArgs e)
{
string connectionString = @"Data Source=702-01;Initial Catalog=DBUser;Integrated Security=True";
OleDbConnection ole = null;
OleDbDataAdapter da = null;
DataTable dt = null;
string strConn = "Provider=Microsoft.ACE.OLEDB.12.0;"
+ "Data Source=" + txtFilePath.Text.Trim() + ";"
+ "Extended Properties=Excel 12.0";
string sTableName = combox1.Text.Trim();
string strExcel = "select * from [" + sTableName + "]";
try
{
ole = new OleDbConnection(strConn);
ole.Open();
da = new OleDbDataAdapter(strExcel, ole);
dt = new DataTable();
da.Fill(dt);
using (System.Data.SqlClient.SqlBulkCopy bcp = new System.Data.SqlClient.SqlBulkCopy(connectionString))
{
//bcp.SqlRowsCopied += new System.Data.SqlClient.SqlRowsCopiedEventHandler(bcp_SqlRowsCopied);
//bcp.SqlRowsCopied += new System.Data.SqlClient.SqlRowsCopiedEventHandler(bcp_SqlRowsCopied);
bcp.BatchSize = 1000;//每次传输的行数
// bcp.NotifyAfter = 1000;//进度提示的行数
bcp.DestinationTableName = "tb_bigdata";//目标表
bcp.WriteToServer(dt);
MessageBox.Show("导入完成!");
}
//为datagridview设置数据源
this.xlsExpData.DataSource = dt;
//设置每一列显示数据模式为AllCells
//for (int i = 0; i < dt.Columns.Count; i++)
//{
// xlsExpData.Columns[i].AutoSizeMode = DataGridViewAutoSizeColumnMode.AllCells;
//}
ole.Close();
}
catch (Exception Ex)
{
MessageBox.Show(Ex.Message);
}
finally
{
if (ole != null)
ole.Close();
}
}
//进度显示
void bcp_SqlRowsCopied(object sender, System.Data.SqlClient.SqlRowsCopiedEventArgs e)
{
this.Text = e.RowsCopied.ToString();
this.Update();
}
}
}
这里我们经过多次测试,将24万条数据导入到sqlserver中,因为目前手边没有可以测试的服务器就临时使用自己的计算机当做服务器进行测试,这里是我的电脑配置:
平均导入时间在20秒左右,上下不差1秒,执行时间和BatchSize设置也有关系,如果设置为100,则需要35秒左右,如果是真正的服务器的话相信执行时间会大大缩短,大家都知道服务器的处理事务能力比普通计算机要强大很多。
当然在本地使用时,效率是比insert高的,但是也有很多限制比如:
1、导入时会有排它意向锁,易死锁。
2、数据只能从服务器本地导入到本地服务器上的数据库中,无法从客户端将数据导入到远程服务器上等等
那么可能大家会担心了,这样也不行啊,客户端不能导入到远程服务器上很不方便的,那么我又研究了一种实现的方式,就是采用数据适配器,DataSet实现数据导入,我们可以将数据文件先导入到DataTable或者DataSet中,然后提交回数据库,这样也实现了数据导入,这样就不会有上边的限制了,至于具体代码就不说了,相信大家应该都会,就是ADO.NET所谓基本对象的应用,如果真的有需要具体代码的可以联系我,但是导入过程中会瞬间部分内存占用,但是占用的内存应该没啥问题,不会有什么影响。
所以我们可以视情况而定,具体选择哪种导入方式,灵活运用,提高工作效率,当然这里由于自身能力原因,暂时只研究了这几种方式,一定还有效率更高的导入方式,这里我会继续研究,如果有新进展一定及时更新,如果有需要请关注或者私信我,大家一起学习,一起进步,希望会帮助到大家。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10