谷歌教你学 AI-第三讲简单易懂的估算器
Google Cloud发布了名为"AI Adventures"的系列视频,用简单易懂的语言让初学者了解机器学习的方方面面。
观看更多国外公开课,点击"阅读原文"
前两期我们分别讲到了机器学习的概念和具体步骤,今天让我们来看到第三讲,使用TensorFlow Estimator进行机器学习。
CDA字幕组目前在对该系列视频进行汉化,之后将继续连载,欢迎关注和支持~
主讲人还是来自Google Cloud的开发人员,华裔小哥Yufeng Guo。让我们在学习AI知识的同时来提高英语吧。
附有中文字幕的视频如下:
AI Adventures--第三讲简单易懂的估算器
针对不方便打开视频的小伙伴,CDA字幕组也贴心的整理了文字版本,如下:
机器学习棒极了,除了它迫使你用到高数的时候。进行机器学习的工具得到了极大地发展,训练模型也从未如此简单。
我们将利用对数据集的理解,而不是对纯粹数学知识的理解,以此编程得出模型,最终得出相应见解。在本期视频,我们将用少部分代码训练一个简单的分类器。
TensorFlow Estimator
为了训练分类器,我们将使用TensorFlow。谷歌的开源机器学习库。 TensorFlow有很庞大的API,但是我们要关注的是当中的高级API,称为Estimator(估算器)。
Estimator为我们把训练循环打包起来,这样我们可以通过配置来训练模型,而不是手工进行编程。从而去除了许多样板文件,让我们在更高的层面上思考抽象问题。意味着我们能够参与到机器学习有意思的部分,而不用为各个细节而烦恼。
由于目前为止我们只涉及到线性模型,因此将主要围绕该部分。之后会再看到这个例子,用来拓展其能力。
鸢尾花分类
这次我们将构建一个模型,用来区分三种类似的花。我感觉这可能没有上一期区分葡萄酒和啤酒那么有意思,但是这些花朵更难区分,从而构成一项有趣的挑战。
我们将对不同种类的鸢尾花进行区分。我不确定我能区分鸢尾花和玫瑰,但是我们模型的目的是区分出山鸢尾(Iris Setosa)、杂色鸢尾(Iris Versicolour)和维吉尼亚鸢尾(Iris Virginica)。
山鸢尾(Iris Setosa)、杂色鸢尾(Iris Versicolour)和维吉尼亚鸢尾(Iris Virginica)
我们有鸢尾花卉数据集,包括花瓣和花萼长宽度数据。这四列将作为我们的“特征”。
加载数据
在引入TensorFlow和NumPy后,我们将加载数据集,使用TensorFlow的函数load_csv_with_header 。数据或者特征呈现为浮点数。同时每行数据或对象的标签记录为整型数(integer):0、1、2,对应三种花。
我输出了加载的结果,现在我们可以用命名的属性访问训练数据和相关标签或对象。
建立模型
下面我们开始建模。首先我们需要设定特征列。特征列决定了进入模型的数据类型。我们将用到四维特征列表示特征,称为“flower_features”。
使用估算器(estimator)建模超级简单。使用`tf.estimator.LinearClassifier`,我们可以通过传递之前创建的特征列让模型实例化;该模型得出的不同输出数字,比如这里是3;还有存储模型训练过程和输出文件的目录。这使TensorFlow能够在有需要的情况下,继续进行之前的训练。
输入函数
分类对象能帮我们记录状态,然后我们差不多可以进入训练阶段了。最后还有一个连接模型和训练数据的部分,即输入函数。输入函数的作用是创建TensorFlow操作,从而从模型中生成数据。
如今我们从原始数据到输入函数,通过数据,通过特征列的映射,进入到模型中。注意,我们对特征使用定义特征列的相同名称。这样数据才会是相关联的。
运行训练
现在可以开始训练了。为了训练模型,我们要运行classifier.train()函数,当中输入函数作为实参。就这样我们把数据集和模型连接起来。
训练函数处理训练回路,对数据集进行迭代,一步步提高性能。就这样我们完成了一千个训练步骤! 我们的数据集不大,因此完成得很快。
评估
现在该对结果进行评估了。我们可以使用之前相同的分类对象,因为这具有模型的训练状态。为了确定我们模型的性能,我们可以运行classifier.evaluate()函数,传递到测试数据集,从返回的指标中提取准确率。
我们的准确率为96.66%! 很不错嘛!!
Estimators: 简单的工作流程
让我们停下来,回顾一下使用Estimator我们目前实现了哪些成果。
Estimator API 为我们提供了很棒的工作流程,从获取原始数据,通过输入函数传递,设立特色列和模型结构,运行训练,进行评估。容易理解的框架让我们能够思考数据和其性能,而不是依赖数学,这太棒了!
下期预告
在本期视频中,我们看到了TensorFlow高级API中的一个简单版本,使用Estimator。在之后的视频中,我们将探究如何对模型进行扩展,使用更多复杂的数据,添加更多高级特征。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09