
【每周一期-数据蒋堂】SQL的有序分组
我们知道,SQL延用了数学上的无序集合概念,所以SQL的分组并不关注过待分组集合中成员的次序。我们在前面讨论过的等值分组和非等值分组,也都没有关注过这个问题,分组规则都是建立在成员取值本身上。但如果我们要拓展SQL,以有序集合为考虑对象时,那就必须考虑成员次序对分组的影响了,而且,现实业务中有大量的有序分组应用场景。
一个简单的例子:将一个班的学生平均分成三份(假定人数能被3整除)。按我们在前面所说的分组定义,这也可以看成是一种分组,但这个运算在SQL中却很难写出来,因为分组依据和成员取值没有关系。
如果使用我们在前面讲有序遍历语法时的#符号,这个问题就很容易解决了。
A.group( (#-1)*3\A.len() ) // 按序号分成前1/3,中1/3,后1/3
A.group( (#-1)%3 ) // 还可以按序号每三个中取一个构成分组子集
用SQL实现这个运算就麻烦很多,需要先用子查询造出一个序号,然后再执行类似的分组规则。
上面这个例子中其实还没有真正关注成员的次序,只是说明了序号的作用,待分组集合的成员是其它次序时也可以得到可用的结果。
我们再看更多例子。
处理文本日志时,有些日志的基本单位不是1行,而可能是3行,即每个事件总是写出3行文本,这并不是多罕见的情况。对付这种日志时,就需要把文本每3行拆成一个分组子集,然后针对每个分组再进行详细的分析处理。这时要正确的分组运算就必须依赖于待分组集合中成员(文本日志的行)的次序了。
入学考试之后,把学生按成绩排序蛇行分拆成两个班,即名次1,4,5,8,...在一个,而2,3,6,7,...在另一个班,这样能保证两个班的平均名次是相同的。这个分组也可以用序号做出来:
A.sort@z(score).group(#%4<2)
这里用的分组值不再是常见的普通数值,而是一个布尔量,相当于按“真“值和“假”值分成两个组,真值对应第一个班,假值对应另一个班。本质上讲,这还是个等值分组,只是用到的分组值可以是任意泛型。
显然,这个分组的正确性也严重依赖于待分组集成的成员次序。
顺便说一句,这又是一个只关注分组子集而不关心聚合值的例子。按序号分组在很多情况下就是用序号来计算出分组依据,然后就变成普通的等值分组了。那么有没有不能简单地转换成等值分组的情况呢?
有一组婴儿出生记录,是按出生次序排序的,我们现在关心连续出生的同性别婴儿数量超过5的有多少批?
简单想,这就是先GROUP,计算每组COUNT值,然后数出有几个大于5的。后两步很简单,问题是怎么GROUP?
直接按婴儿性别分组当然是不对的,必须考虑次序,依次扫描记录,当婴儿性别发生变化时则产生一个新组。这种分组显然没法直接用等值分组做出来了。
我们可以提供一个有序分组方法来实现这种分组:当考察值发生变化时就产生一个新的分组。
A.group@o(gender).count(~.len()>5) // @o选项表示分组值变化时将产生新分组。
用SQL就麻烦很多,需要先造成中间标志和变量来生成组的序号,大概是这样
SELECT COUNT(*) FROM
(SELECT ChangeNumber FROM
(SELECT SUM(ChangeFlag) OVER (ORDER BY birthday) ChangeNumber FROM
(SELECT CASE WHEN gender=LAG(gender) OVER ( ORDER BY birthday) THEN 0 ELSE 1 END ChangeFlag FROM A))
GROUP ChangeNumber HAVING COUNT(*)>5)
这样的SQL,看懂都不是很容易的。而且必须借助birthday这种字段来形成次序,而前述的有序分组写法在原数据有序时根本用不着这个信息。
这种场景同样可能出现在文本分析中。每个用户的事件日志可能多行,而且行数不确定,但写日志时会在每个行开始处写上用户号。这样我们可以按这个用户号进行有序分组,它变化时就说明是另一个用户的事件了。
即使是普通的等值分组,如果事先知道原集合对分组字段有序,也可以使用这种方案来实施,这将获得更高的性能,比数据库常用的HASH分组方案要快得多,而且特别适合大数据遍历的情况。
再看一个著名的问题:一支股票最长连续上涨了多少天?
这个问题当然可以直接遍历去解决,不过我们现在用分组的思路来处理,至少在SQL体系下只能这么做(严格些说,这是目前找到的最简单可行的办法)。
将股票收盘价按日期排序,然后将连续上涨的日期分到同一组,这样只要考虑哪一组成员数最多即可。更明确地说,就是当某天上涨了,就把这一天和前一天分到一个组中,某天下跌了,则产生一个新组。
用SQL实现这个思路,同样需要用中间标志和变量来生成组序号:
SELECT MAX(ContinuousDays) FROM
(SELECT COUNT(*) ContinuousDays FROM
(SELECT SUM(RisingFlag) OVER (ORDER BY TradingDate ) NoRisingDays FROM
(SELECT TradingDate,
CASE WHEN ClosingPrice>LAG(ClosingPrice) OVER (ORDER BY TradingDate THEN 0 ELSE 1 END) RisingFlag
FROM A))
GROUP BY NoRisingDays)
如果有专门的有序分组方法以及以前说过的有序遍历语法,这个运算就很简单了:
A.sort(TradingDate).group@i(ClosingPrice
与SQL不同,虽然实现思路完全一样,但写出来是分步的,而不是一个多层嵌套语句,书写和理解都要容易得多。
同样地,这种场景也会在文本分析中有用。不确定行数的日志中,有时会在事件分始时写一个标志串,当扫描到这个标志串的时候就产生一个新的分组,有序分析的条件可设定为当前扫描行和指定文字相同,这样就能保证同一事件的日志信息在同一个组中。
后两种有序分组的情况,理论上当然也可以转换成等值分组来处理(用SQL就要这么做,这也能从另一个侧面说明SQL运算体系的完备性),但确实是相当麻烦的,所以我们一般不把它再当成等值分组来处理了。
到目前为止的分组讨论,都是假定待分组集合已经准备好,其成员可以被随机访问到。但如果数据量巨大而不能全部读入时,如果继续做这种假定,会导致频繁的外存交换而性能极差,这时需要再设计以流方式边读入边分组并且边聚合的运算体系。事实上日志分析中更常见的是这种情况,这些问题我们将再撰文研究,但基本方法思路仍然离不开上面这些内容。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23