R处理数据的案例
将学生的各科考试成绩组合为单一的成绩衡量指标、基于相对名次(前20%,下20%,等等)给出从A到F的评分、根据学生姓氏和名字的首字母对花名册进行排序
代码如下:
[python] view plain copy
print?
options(digits = 2)
Student<-c("John Davis","Angela Williams","Bullwinkle Moose","David Jones",
"Janice Markhammer","Cheryl Cushing","Reuven Ytzrhak","Greg Knox",
"Joel England","Mary Rayburn")
Math<-c(502,600,412,358,495,512,410,625,573,522)
Science<-c(95,99,80,82,75,85,80,95,89,86)
English<-c(25,22,18,15,20,28,15,30,27,18)
roster<-data.frame(Student,Math,Science,English,stringsAsFactors = FALSE)
head(roster)
tail(roster)
z<-scale(roster[,2:4])
score<-apply(z, 1, mean)
roster<-cbind(roster,score)
help(quantile)
y<-quantile(score,c(.8,.6,.4,.2))
str(y)
roster$grade[score>=y[1]]<- "A"
roster$grade[score<y[1]& score>=y[2]]<-"B"
roster$grade[score<y[2]& score>=y[3]]<-"C"
roster$grade[score<y[3]& score>=y[4]]<-"D"
roster$grade[score<y[4]]<-"F"
name<-strsplit((roster$Student)," ")
lastname<-sapply(name,"[",2)
fristname<-sapply(name,"[",1)
roster<-cbind(fristname,lastname,roster[,-1])
roster<-roster[order(lastname,fristname),]
roster[,-9]
以上代码写得比较紧凑,逐步分解如下。
步骤1 原始的学生花名册已经给出了。options(digits=2)限定了输出小数点后数字的位数,
并且让输出更容易阅读。
步骤2 由于数学、科学和英语考试的分值不同(均值和标准差相去甚远),在组合之前需要先让它们变得可以比较。一种方法是将变量进行标准化,这样每科考试的成绩就都是用单位标准差来表示,而不是以原始的尺度来表示了。这个过程可以使用scale()函数来实现。
[python] view plain copy
print?
z
Math Science English
[1,] 0.013 1.078 0.587
[2,] 1.143 1.591 0.037
[3,] -1.026 -0.847 -0.697
[4,] -1.649 -0.590 -1.247
[5,] -0.068 -1.489 -0.330
[6,] 0.128 -0.205 1.137
[7,] -1.049 -0.847 -1.247
[8,] 1.432 1.078 1.504
[9,] 0.832 0.308 0.954
[10,] 0.243 -0.077 -0.697
步骤3 然后,可以通过函数mean()来计算各行的均值以获得综合得分,并使用函数cbind()将其添加到花名册中:
[python] view plain copy
print?
>roster[,-9]
fristname lastname lastname.1 Math Science English score
5 Cheryl Cushing Markhammer 495 75 20 -0.63
6 John Davis Cushing 512 85 28 0.35
2 Joel England Williams 600 99 22 0.92
4 David Jones Jones 358 82 15 -1.16
10 Greg Knox Rayburn 522 86 18 -0.18
8 Janice Markhammer Knox 625 95 30 1.34
9 Bullwinkle Moose England 573 89 27 0.70
7 Mary Rayburn Ytzrhak 410 80 15 -1.05
1 Angela Williams Davis 502 95 25 0.56
3 Reuven Ytzrhak Moose 412 80 18 -0.86
步骤4 函数quantile()给出了学生综合得分的百分位数。可以看到,成绩为A的分界点为0.74,B的分界点为0.44,等等。
[python] view plain copy
print?
> y
80% 60% 40% 20%
0.74 0.44 -0.36 -0.89
步骤5 通过使用逻辑运算符,你可以将学生的百分位数排名重编码为一个新的类别型成绩变量。下面在数据框roster中创建了变量grade
步骤6 你将使用函数strsplit()以空格为界把学生姓名拆分为姓氏和名字。把strsplit()应用到一个字符串组成的向量上会返回一个列表:
[python] view plain copy
print?
name<-strsplit((roster$Student)," ")
[python] view plain copy
print?
> name
[[1]]
[1] "John" "Davis"
[[2]]
[1] "Angela" "Williams"
[[3]]
[1] "Bullwinkle" "Moose"
[[4]]
[1] "David" "Jones"
[[5]]
[1] "Janice" "Markhammer"
[[6]]
[1] "Cheryl" "Cushing"
[[7]]
[1] "Reuven" "Ytzrhak"
[[8]]
[1] "Greg" "Knox"
[[9]]
[1] "Joel" "England"
[[10]]
[1] "Mary" "Rayburn"
步骤7 你可以使用函数sapply()提取列表中每个成分的第一个元素,放入一个储存名字的向量,并提取每个成分的第二个元素,放入一个储存姓氏的向量。"["是一个可以提取某个对象的一部分的函数——在这里它是用来提取列表name各成分中的第一个或第二个元素的。你将使用cbind()把它们添加到花名册中。由于已经不再需要student变量,可以将其丢弃(在下标中使用1)。
步骤8 最后,可以使用函数order()依姓氏和名字对数据集进行排序.
[python] view plain copy
print?
> roster[,-9]
fristname lastname lastname.1 Math Science English score grade
5 Cheryl Cushing Markhammer 495 75 20 -0.63 C
6 John Davis Cushing 512 85 28 0.35 B
2 Joel England Williams 600 99 22 0.92 B
4 David Jones Jones 358 82 15 -1.16 F
10 Greg Knox Rayburn 522 86 18 -0.18 A
8 Janice Markhammer Knox 625 95 30 1.34 D
9 Bullwinkle Moose England 573 89 27 0.70 D
7 Mary Rayburn Ytzrhak 410 80 15 -1.05 C
1 Angela Williams Davis 502 95 25 0.56 A
3 Reuven Ytzrhak Moose 412 80 18 -0.86 F
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29