
R处理数据的案例
将学生的各科考试成绩组合为单一的成绩衡量指标、基于相对名次(前20%,下20%,等等)给出从A到F的评分、根据学生姓氏和名字的首字母对花名册进行排序
代码如下:
[python] view plain copy
print?
options(digits = 2)
Student<-c("John Davis","Angela Williams","Bullwinkle Moose","David Jones",
"Janice Markhammer","Cheryl Cushing","Reuven Ytzrhak","Greg Knox",
"Joel England","Mary Rayburn")
Math<-c(502,600,412,358,495,512,410,625,573,522)
Science<-c(95,99,80,82,75,85,80,95,89,86)
English<-c(25,22,18,15,20,28,15,30,27,18)
roster<-data.frame(Student,Math,Science,English,stringsAsFactors = FALSE)
head(roster)
tail(roster)
z<-scale(roster[,2:4])
score<-apply(z, 1, mean)
roster<-cbind(roster,score)
help(quantile)
y<-quantile(score,c(.8,.6,.4,.2))
str(y)
roster$grade[score>=y[1]]<- "A"
roster$grade[score<y[1]& score>=y[2]]<-"B"
roster$grade[score<y[2]& score>=y[3]]<-"C"
roster$grade[score<y[3]& score>=y[4]]<-"D"
roster$grade[score<y[4]]<-"F"
name<-strsplit((roster$Student)," ")
lastname<-sapply(name,"[",2)
fristname<-sapply(name,"[",1)
roster<-cbind(fristname,lastname,roster[,-1])
roster<-roster[order(lastname,fristname),]
roster[,-9]
以上代码写得比较紧凑,逐步分解如下。
步骤1 原始的学生花名册已经给出了。options(digits=2)限定了输出小数点后数字的位数,
并且让输出更容易阅读。
步骤2 由于数学、科学和英语考试的分值不同(均值和标准差相去甚远),在组合之前需要先让它们变得可以比较。一种方法是将变量进行标准化,这样每科考试的成绩就都是用单位标准差来表示,而不是以原始的尺度来表示了。这个过程可以使用scale()函数来实现。
[python] view plain copy
print?
z
Math Science English
[1,] 0.013 1.078 0.587
[2,] 1.143 1.591 0.037
[3,] -1.026 -0.847 -0.697
[4,] -1.649 -0.590 -1.247
[5,] -0.068 -1.489 -0.330
[6,] 0.128 -0.205 1.137
[7,] -1.049 -0.847 -1.247
[8,] 1.432 1.078 1.504
[9,] 0.832 0.308 0.954
[10,] 0.243 -0.077 -0.697
步骤3 然后,可以通过函数mean()来计算各行的均值以获得综合得分,并使用函数cbind()将其添加到花名册中:
[python] view plain copy
print?
>roster[,-9]
fristname lastname lastname.1 Math Science English score
5 Cheryl Cushing Markhammer 495 75 20 -0.63
6 John Davis Cushing 512 85 28 0.35
2 Joel England Williams 600 99 22 0.92
4 David Jones Jones 358 82 15 -1.16
10 Greg Knox Rayburn 522 86 18 -0.18
8 Janice Markhammer Knox 625 95 30 1.34
9 Bullwinkle Moose England 573 89 27 0.70
7 Mary Rayburn Ytzrhak 410 80 15 -1.05
1 Angela Williams Davis 502 95 25 0.56
3 Reuven Ytzrhak Moose 412 80 18 -0.86
步骤4 函数quantile()给出了学生综合得分的百分位数。可以看到,成绩为A的分界点为0.74,B的分界点为0.44,等等。
[python] view plain copy
print?
> y
80% 60% 40% 20%
0.74 0.44 -0.36 -0.89
步骤5 通过使用逻辑运算符,你可以将学生的百分位数排名重编码为一个新的类别型成绩变量。下面在数据框roster中创建了变量grade
步骤6 你将使用函数strsplit()以空格为界把学生姓名拆分为姓氏和名字。把strsplit()应用到一个字符串组成的向量上会返回一个列表:
[python] view plain copy
print?
name<-strsplit((roster$Student)," ")
[python] view plain copy
print?
> name
[[1]]
[1] "John" "Davis"
[[2]]
[1] "Angela" "Williams"
[[3]]
[1] "Bullwinkle" "Moose"
[[4]]
[1] "David" "Jones"
[[5]]
[1] "Janice" "Markhammer"
[[6]]
[1] "Cheryl" "Cushing"
[[7]]
[1] "Reuven" "Ytzrhak"
[[8]]
[1] "Greg" "Knox"
[[9]]
[1] "Joel" "England"
[[10]]
[1] "Mary" "Rayburn"
步骤7 你可以使用函数sapply()提取列表中每个成分的第一个元素,放入一个储存名字的向量,并提取每个成分的第二个元素,放入一个储存姓氏的向量。"["是一个可以提取某个对象的一部分的函数——在这里它是用来提取列表name各成分中的第一个或第二个元素的。你将使用cbind()把它们添加到花名册中。由于已经不再需要student变量,可以将其丢弃(在下标中使用1)。
步骤8 最后,可以使用函数order()依姓氏和名字对数据集进行排序.
[python] view plain copy
print?
> roster[,-9]
fristname lastname lastname.1 Math Science English score grade
5 Cheryl Cushing Markhammer 495 75 20 -0.63 C
6 John Davis Cushing 512 85 28 0.35 B
2 Joel England Williams 600 99 22 0.92 B
4 David Jones Jones 358 82 15 -1.16 F
10 Greg Knox Rayburn 522 86 18 -0.18 A
8 Janice Markhammer Knox 625 95 30 1.34 D
9 Bullwinkle Moose England 573 89 27 0.70 D
7 Mary Rayburn Ytzrhak 410 80 15 -1.05 C
1 Angela Williams Davis 502 95 25 0.56 A
3 Reuven Ytzrhak Moose 412 80 18 -0.86 F
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09