数据分析的8个流程与7个常用思路
在产品运营过程中,数据分析具有极其重要的战略意义,是产品优化和产品决策的核心大脑。因此做好数据分析,是产品运营中最重要的环节之一。
那么如何做好支付的数据分析呢?以下梳理出数据分析的8步流程,以及常见的7种分析思路。新手在启动数据分析前,最好跟主管或数据经验较丰富的童鞋确认每一步的分析流程。
一、数据分析八流程:
为什么分析?
首先,你得知道为什么分析?弄清楚此次数据分析的目的。比如,这次短信方式的数据分析,为什么要做这个分析。你所有的分析都的围绕这个为什么来回答。避免不符合目标反复返工,这个过程会很痛苦。
分析目标是谁?
分析目标是谁? 要牢记清楚的分析因子,统计维度是订单,还是用户,还是金额,还是用户行为。避免把订单当用户算,把用户当订单算(上周运营同学真实案例),算出的结果是差别非常大的。
想达到什么效果?
通过分析各个维度的用户,订单,找到真正的问题。例如这次的XX通道的分析,全盘下线,或维持现状不动,都不符合利益最大化原则。通过分析,找到真正的问题根源,发现用户精细化运营已经非常必要了。
需要哪些数据?
支付的数据,茫茫大海,数据繁多,用“海”来形容一点都不为过。需要哪些源数据?付费总额,付费人数?新老用户维度?付费次数?转移人数?留存率?用户特征?画像?先整理好思路,列一个表。避免数据部门同学今天跑一个数据,明天又跑一个数据,数据部门同学也会比较烦。
如何采集?
直接数据库调取?或者交给程序猿导出? 自己写SQL?运营同学不妨都学一下SQL,自力更生。
如何整理?
整理数据是门技术活。不得不承认EXCEL是个强大工具,数据透视表的熟练使用和技巧,作为支付数据分析必不可少,各种函数和公式也需要略懂一二,避免低效率的数据整理。Spss也是一个非常优秀的数据处理工具,特别在数据量比较大,而且当字段由特殊字符的时候,比较好用。
如何分析?
整理完毕,如何对数据进行综合分析,相关分析?这个是很考验逻辑思维和推理能力的。同时分析推理过程中,需要对产品了如指掌,对用户很了解,对渠道很熟悉。看似一个简单的数据分析,其实是各方面能力的体现。首先是技术层面,对数据来源的抽取-转换-载入原理的理解和认识;其实是全局观,对季节性、公司等层面的业务有清晰的了解;最后是专业度,对业务的流程、设计等了如指掌。练就数据分析的洪荒之力并非一朝一夕之功,而是在实践中不断成长和升华。一个好的数据分析应该以价值为导向,放眼全局、立足业务,用数据来驱动增长。运营同学比较容易聚在某个点上转圈走不出来。
如何展现和输出?
数据可视化也是一个学问。如何用合适的图表表现?每一种图表的寓意是什么?下面列举下常用的8个图表:
(1)、折线图:合适用于随时间而变化的连续数据,例如随时间收入变化,及增长率变化。
(2)、柱型图:主要用来表示各组数据之间的差别。主要有二维柱形图、三维柱形图、圆柱图、圆锥图和棱锥图。如支付宝与微信覆盖率差别。
(3)、堆积柱形图:堆积柱形图不仅可以显示同类别中每种数据的大小,还可以显示总量的大小。例如我们需要表示各个支付方式的人数及总人数时。
(4)、线-柱图:这种类型的图不仅可以显示出同类别的比较,还可以显示出趋势情况。
(5)、条形图:类似于横向的柱状图,和柱状图的展示效果相同,主要用于各项类的比较。
(6)、饼图:主要显示各项占比情况。饼图一般慎用,除非占比区别非常明显。因为肉眼对对饼图的占比比例分辨并不直观。而且饼图的项,一般不要超过6项。6项后建议用柱形图更为直观。
(7)、复合饼图:一般是对某项比例的下一步分析。
(8)、母子饼图:可直观地分析项目的组成结构与比重。例如上次短信支付能力用户中,没有第3方支付能力的用户,中间有X%比例是没银行卡,X%比例是没微信支付账号等。
图表不必太花哨,一个表说一个问题就好。用友好的可视化图表,节省阅读者的时间,也是对阅读者的尊重。
有一些数据,辛辛苦苦做了整理和分析,最后发现对结论输出是没有关系的,虽然做了很多工作,但不能为了体现工作量而堆砌数据。
在展现的过程中,请注明数据的来源,时间,指标的说明,公式的算法,不仅体现数据分析的专业度,更是对报告阅读者的尊重。
二、数据分析七思路:
简单趋势
通过实时访问趋势了解产品使用情况。如总流水,总用户,总成功率,总转化率。
多维分解
根据分析需要,从多维度对指标进行分解。例如新老用户、支付方式、游戏维度、产品版本维度、推广渠道、来源、地区、设备品牌等等维度。
转化漏斗
按照已知的转化路径,借助漏斗模型分析总体和每一步的转化情况。常见的转化情境有下单率,成功转化率等。
用户分群
在精细化分析中,常常需要对有某个特定行为的用户群组进行分析和比对;数据分析需要将多维度和多指标作为分群条件,有针对性地优化产品,提升用户体验。例如我们这次对短信这类用户,短信里又有第3方和无第3方支付能力的,需要再进行分群的运营。
细查路径
数据分析可以观察用户的行为轨迹,探索用户与产品的交互过程;进而从中发现问题、激发灵感亦或验证假设。例如我们这次对新用户的运营,也非常有意思。
留存分析
留存分析是探索用户行为与回访之间的关联。一般我们讲的留存率,是指“新增用户”在一段时间内“回访”的比例。通过分析不同用户群组的留存差异、使用过不同功能用户的留存差异来找到产品的增长点。
A/B 测试
A/B测试就是同时进行多个方案并行测试,但是每个方案仅有一个变量不同;然后以某种规则(例如用户体验、数据指标等)优胜略汰选择最优的方案。数据分析需要在这个过程中选择合理的分组样本、监测数据指标、事后数据分析和不同方案评估。
不单是支付的数据分析,其他的产品运营数据分析流程和思路也一样适用,只是支付数据相对其他产品而言,维度很多,以及组合的维度也非常多,因此就需要更清晰的思路和大局观,避免陷入到数据海洋中。
数据分析咨询请扫描二维码
CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16在现代企业中,数据分析师扮演着至关重要的角色。他们不仅负责处理和分析大量的数据,还需要将这些分析结果转化为切实可行的商业 ...
2024-12-16在当今的大数据时代,数据分析已经成为推动企业战略的重要组成部分。无论是金融、医疗、零售,还是制造业,各个行业对数据分析的 ...
2024-12-16在当今这个以数据为驱动力的时代,数据分析领域正在迅速扩展与发展。随着大数据、人工智能和机器学习技术的不断进步,数据分析已 ...
2024-12-16在信息爆炸和数据驱动的时代,数据分析专业是否值得一选成为许多人思考的议题。无论是刚刚迈入大学校门的新生,还是考虑职业转型 ...
2024-12-16适合数据分析专业学生的实习岗位有很多,以下是一些推荐: 阿里巴巴数据分析岗位实习:适合经济、统计学、数学及计算机专业的 ...
2024-12-16在数据科学领域,探索实习机会是一个理想的学习和成长方式。实习不仅可以提供宝贵的实践经验,还能帮助学生发展关键的数据分析技 ...
2024-12-16在当今信息驱动的时代,数据分析不仅成为了企业决策的重要一环,还催生了各种职业机会。从技术到业务,数据分析专业的就业岗位种 ...
2024-12-16在现代企业中,数据分析师被誉为“数据探险家”,他们通过揭示隐藏在数据背后的故事,帮助公司优化业务策略和做出明智的决策。然 ...
2024-12-16在大数据崛起的时代,数据分析师被誉为企业的“幕后英雄”。他们通过解读数据,揭示隐藏的真相,为企业战略提供重要的指导。这份 ...
2024-12-16在这个信息大爆炸的时代,数据分析师成为了企业中的“福尔摩斯”,他们能够从庞杂的数据中提取关键洞察,为业务发展提供坚实支持 ...
2024-12-16在这个数据为王的现代社会,数据分析师如同企业的导航员,洞悉数据背后所隐藏的商业机会和战略优势。然而,成为一名优秀的数据分 ...
2024-12-16