R语言使用密度聚类笔法处理数据
说明
除了使用距离作为聚类指标,还可以使用密度指标来对数据进行聚类处理,将分布稠密的样本与分布稀疏的样本分离开。DBSCAN是最著名的密度聚类算法。
操作
将使用mlbench包提供的仿真数据
library(mlbench)
library(fpc)
使用mlbench库绘制Cassini问题图:
set.seed(2)
p = mlbench.cassini(500)
plot(p$x)
根据数据密度完成聚类:
ds = dbscan(dist(p$x),0.2,2,countmode = NULL,method = "dist")
> ds
dbscan Pts=500 MinPts=2 eps=0.2
1 2 3
seed 200 200 100
total 200 200 100
绘制聚类结果散点图,属于不同簇的数据点选用不的颜色:
plot(ds,p$x)
根据聚簇标号绘制的彩色散点图
调用dbscan来预测数据点可能被划分到那个簇,在样例中,首先在矩阵P中处理三个输入值:
生成y矩阵
y = matrix(0,nrow = 3,ncol = 2)
y[1,] = c(0,0)
y[2,] = c(0,-1.5)
y[3,] = c(1,1)
y
[,1] [,2]
[1,] 0 0.0
[2,] 0 -1.5
[3,] 1 1.0
预测数据点属于那个簇:
predict(ds,p$x,y)
[1] 3 1 2
原理
基于密度的聚类算法利用了密度可达以及密度相连的特点,因而适用于处理非线性聚类问题。当探讨密度聚类算法的处理过程前,我们要知道基于密度的聚类算法通常需要考虑两个参数,eps和MinPts,其中eps为最大领域半径,MinPts是领域半径范围内的最小点数。
确定好这两个参数后,如果给定对象其领域范围内的样本点个数大于MinPts,则称该对象为核心点。
如果一个对象其领域半径范围内的样本点个数小于MinPts,但紧挨着核心点,则称该对象为边缘点。
如果P对象的eps领域范围内样本点个数大于MinPts,则称该对象为核心对象。
进一步,我们还要定义两点间密度可达的概念,给定两点p和q,如果p为核心对象,且q在p的eps邻域内,则称p直接密度可以达q。如果存在一系列的点,p1,p2,…,pn。且p1 = q,pn = p,根据Eps和MinPts的值,当1<=i<=n,pi + 1 直接密度可以达pi,则称p的一般密度可以达q。
DBSCAN处理过程:
1.随机选择一个点p
2.给定Eps和MinPts的条件下,获得所有p密度可达的点
3.如果p是核心对象,则p和所有p密度可达的点被标记成一个簇,如果p是一个边缘点,找不到密度可达点,则将其标记为噪声。接着处理其它点。
4.重复这个过程,直到所有的点被处理。
本例使用dbscan算法聚类Cassini数据集,将可达距离设置为0.2,最小可达点个数设置为2,计算进度设为NULL,使用距离矩阵做为计算依据。经过算法处理,数据被划分成三个簇,每个簇的大小分别为200,200,100.通过聚簇的结果示意图也可以发现Cassini图被不同颜色区分开来。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16