京公网安备 11010802034615号
经营许可证编号:京B2-20210330
决策树
经验熵是针对所有样本的分类结果而言
经验条件熵是针对每个特征里每个特征样本分类结果之特征样本比例和
基尼不纯度
简单地说就是从一个数据集中随机选取子项,度量其被错误分类到其他分组里的概率

决策树算法使用轴平行分割来表现具体一定的局限性
C5.0算法--可以处理数值型和缺失 只使用最重要的特征--使用的熵度量-可以自动修剪枝
划分数据集
set.seed(123) #设置随机种子
train_sample <- sample(1000, 900)#从1000里随机900个数值
credit_train <- credit[train_sample, ]
credit_test <- credit[-train_sample, ]
library(C50)
credit_model <- C5.0(credit_train[-17], credit_train$default) #特征数据框-标签
C5.0(train,labers,trials = 1,costs = NULL)
trials控制自动法循环次数多迭代效果更好 costs可选矩阵 与各类型错误项对应的成本-代价矩阵
summary(credit_model)#查看模型
credit_pred <- predict(credit_model, credit_test)#预测
predict(model,test,type="class") type取class分类结果或者prob分类概率
单规则算法(1R算法)--单一规则直观,但大数据底下,对噪声预测不准
library(RWeka)
mushroom_1R <- OneR(type ~ ., data = mushrooms)
重复增量修建算法(RIPPER) 基于1R进一步提取规则
library(RWeka)
mushroom_JRip <- JRip(type ~ ., data = mushrooms)
[plain] view plain copy
credit <- read.csv("credit.csv")
str(credit)
# look at two characteristics of the applicant
table(credit$checking_balance)
table(credit$savings_balance)
# look at two characteristics of the loan
summary(credit$months_loan_duration)
summary(credit$amount)
# look at the class variable
table(credit$default)
# create a random sample for training and test data
# use set.seed to use the same random number sequence as the tutorial
set.seed(123)
#从1000里随机900个数值
train_sample <- sample(1000, 900)
str(train_sample)
# split the data frames切分数据集
credit_train <- credit[train_sample, ]
credit_test <- credit[-train_sample, ]
# check the proportion of class variable类别的比例
prop.table(table(credit_train$default))
prop.table(table(credit_test$default))
## Step 3: Training a model on the data ----
# build the simplest decision tree
library(C50)
credit_model <- C5.0(credit_train[-17], credit_train$default)
# display simple facts about the tree
credit_model
# display detailed information about the tree
summary(credit_model)
## Step 4: Evaluating model performance ----
# create a factor vector of predictions on test data
credit_pred <- predict(credit_model, credit_test)
# cross tabulation of predicted versus actual classes
library(gmodels)
CrossTable(credit_test$default, credit_pred,
prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE,
dnn = c('actual default', 'predicted default'))
## Step 5: Improving model performance ----
## Boosting the accuracy of decision trees
# boosted decision tree with 10 trials提高模型性能 利用boosting提升
credit_boost10 <- C5.0(credit_train[-17], credit_train$default,
trials = 10)
credit_boost10
summary(credit_boost10)
credit_boost_pred10 <- predict(credit_boost10, credit_test)
CrossTable(credit_test$default, credit_boost_pred10,
prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE,
dnn = c('actual default', 'predicted default'))
## Making some mistakes more costly than others
# create dimensions for a cost matrix
matrix_dimensions <- list(c("no", "yes"), c("no", "yes"))
names(matrix_dimensions) <- c("predicted", "actual")
matrix_dimensions
# build the matrix设置代价矩阵
error_cost <- matrix(c(0, 1, 4, 0), nrow = 2, dimnames = matrix_dimensions)
error_cost
# apply the cost matrix to the tree
credit_cost <- C5.0(credit_train[-17], credit_train$default,
costs = error_cost)
credit_cost_pred <- predict(credit_cost, credit_test)
CrossTable(credit_test$default, credit_cost_pred,
prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE,
dnn = c('actual default', 'predicted default'))
#### Part 2: Rule Learners -------------------
## Example: Identifying Poisonous Mushrooms ----
## Step 2: Exploring and preparing the data ---- 自动因子转换--将字符标记为因子减少存储
mushrooms <- read.csv("mushrooms.csv", stringsAsFactors = TRUE)
# examine the structure of the data frame
str(mushrooms)
# drop the veil_type feature
mushrooms$veil_type <- NULL
# examine the class distribution
table(mushrooms$type)
## Step 3: Training a model on the data ----
library(RWeka)
# train OneR() on the data
mushroom_1R <- OneR(type ~ ., data = mushrooms)
## Step 4: Evaluating model performance ----
mushroom_1R
summary(mushroom_1R)
## Step 5: Improving model performance ----
mushroom_JRip <- JRip(type ~ ., data = mushrooms)
mushroom_JRip
summary(mushroom_JRip)
# Rule Learner Using C5.0 Decision Trees (not in text)
library(C50)
mushroom_c5rules <- C5.0(type ~ odor + gill_size, data = mushrooms, rules = TRUE)
summary(mushroom_c5rules)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19