
收藏 | 机器学习、NLP、Python和Math最好的150余个教程
尽管机器学习的历史可以追溯到1959年,但目前,这个领域正以前所未有的速度发展。最近,我一直在网上寻找关于机器学习和NLP各方面的好资源,为了帮助到和我有相同需求的人,我整理了一份迄今为止我发现的最好的教程内容列表。
通过教程中的简介内容讲述一个概念。避免了包括书籍章节涵盖范围广,以及研究论文在教学理念上做的不好的特点。
我把这篇文章分成四个部分:机器学习、NLP、Python和数学。
每个部分中都包含了一些主题文章,但是由于材料巨大,每个部分不可能包含所有可能的主题,我将每个主题限制在5到6个教程中。(由于微信不能插入外链,请点击“阅读原文”查看原文)
机器学习
Machine Learning is Fun! (medium.com/@ageitgey)
Machine Learning Crash Course: Part I, Part II, Part III (Machine Learning at Berkeley)
An Introduction to Machine Learning Theory and Its Applications: A Visual Tutorial with Examples (toptal.com)
A Gentle Guide to Machine Learning (monkeylearn.com)
Which machine learning algorithm should I use? (sas.com)
激活和损失函数
Sigmoid neurons (neuralnetworksanddeeplearning.com)
What is the role of the activation function in a neural network? (quora.com)
Comprehensive list of activation functions in neural networks with pros/cons(stats.stackexchange.com)
Activation functions and it’s types-Which is better? (medium.com)
Making Sense of Logarithmic Loss (exegetic.biz)
Loss Functions (Stanford CS231n)
L1 vs. L2 Loss function (rishy.github.io)
The cross-entropy cost function (neuralnetworksanddeeplearning.com)
Bias
Role of Bias in Neural Networks (stackoverflow.com)
Bias Nodes in Neural Networks (makeyourownneuralnetwork.blogspot.com)
What is bias in artificial neural network? (quora.com)
感知器
Perceptrons (neuralnetworksanddeeplearning.com)
The Perception (natureofcode.com)
Single-layer Neural Networks (Perceptrons) (dcu.ie)
From Perceptrons to Deep Networks (toptal.com)
回归
Introduction to linear regression analysis (duke.edu)
Linear Regression (ufldl.stanford.edu)
Linear Regression (readthedocs.io)
Logistic Regression (readthedocs.io)
Simple Linear Regression Tutorial for Machine Learning(machinelearningmastery.com)
Logistic Regression Tutorial for Machine Learning(machinelearningmastery.com)
Softmax Regression (ufldl.stanford.edu)
梯度下降算法
Learning with gradient descent (neuralnetworksanddeeplearning.com)
Gradient Descent (iamtrask.github.io)
How to understand Gradient Descent algorithm (kdnuggets.com)
An overview of gradient descent optimization algorithms(sebastianruder.com)
Optimization: Stochastic Gradient Descent (Stanford CS231n)
生成式学习
Generative Learning Algorithms (Stanford CS229)
A practical explanation of a Naive Bayes classifier (monkeylearn.com)
支持向量机
An introduction to Support Vector Machines (SVM) (monkeylearn.com)
Support Vector Machines (Stanford CS229)
Linear classification: Support Vector Machine, Softmax (Stanford 231n)
反向传播
Yes you should understand backprop (medium.com/@karpathy)
Can you give a visual explanation for the back propagation algorithm for neural - networks? (github.com/rasbt)
How the backpropagation algorithm works(neuralnetworksanddeeplearning.com)
Backpropagation Through Time and Vanishing Gradients (wildml.com)
A Gentle Introduction to Backpropagation Through Time(machinelearningmastery.com)
Backpropagation, Intuitions (Stanford CS231n)
深度学习
Deep Learning in a Nutshell (nikhilbuduma.com)
A Tutorial on Deep Learning (Quoc V. Le)
What is Deep Learning? (machinelearningmastery.com)
What’s the Difference Between Artificial Intelligence, Machine Learning, and Deep - Learning? (nvidia.com)
优化和降维
Seven Techniques for Data Dimensionality Reduction (knime.org)
Principal components analysis (Stanford CS229)
Dropout: A simple way to improve neural networks (Hinton @ NIPS 2012)
How to train your Deep Neural Network (rishy.github.io)
长短期记忆网络
A Gentle Introduction to Long Short-Term Memory Networks by the Experts(machinelearningmastery.com)
Understanding LSTM Networks (colah.github.io)
Exploring LSTMs (echen.me)
Anyone Can Learn To Code an LSTM-RNN in Python (iamtrask.github.io)
卷积神经网络
Introducing convolutional networks (neuralnetworksanddeeplearning.com)
Deep Learning and Convolutional Neural Networks(medium.com/@ageitgey)
Conv Nets: A Modular Perspective (colah.github.io)
Understanding Convolutions (colah.github.io)
递归神经网络
Recurrent Neural Networks Tutorial (wildml.com)
Attention and Augmented Recurrent Neural Networks (distill.pub)
The Unreasonable Effectiveness of Recurrent Neural Networks(karpathy.github.io)
A Deep Dive into Recurrent Neural Nets (nikhilbuduma.com)
强化学习
Simple Beginner’s guide to Reinforcement Learning & its implementation(analyticsvidhya.com)
A Tutorial for Reinforcement Learning (mst.edu)
Learning Reinforcement Learning (wildml.com)
Deep Reinforcement Learning: Pong from Pixels (karpathy.github.io)
生成对抗网络
What’s a Generative Adversarial Network? (nvidia.com)
Abusing Generative Adversarial Networks to Make 8-bit Pixel Art(medium.com/@ageitgey)
An introduction to Generative Adversarial Networks (with code in - TensorFlow) (aylien.com)
Generative Adversarial Networks for Beginners (oreilly.com)
多任务学习
An Overview of Multi-Task Learning in Deep Neural Networks(sebastianruder.com)
自然语言处理
A Primer on Neural Network Models for Natural Language Processing (Yoav Goldberg)
The Definitive Guide to Natural Language Processing (monkeylearn.com)
Introduction to Natural Language Processing (algorithmia.com)
Natural Language Processing Tutorial (vikparuchuri.com)
Natural Language Processing (almost) from Scratch (arxiv.org)
深入学习和NLP
Deep Learning applied to NLP (arxiv.org)
Deep Learning for NLP (without Magic) (Richard Socher)
Understanding Convolutional Neural Networks for NLP (wildml.com)
Deep Learning, NLP, and Representations (colah.github.io)
Embed, encode, attend, predict: The new deep learning formula for state-of-the-art NLP models (explosion.ai)
Understanding Natural Language with Deep Neural Networks Using Torch(nvidia.com)
Deep Learning for NLP with Pytorch (pytorich.org)
词向量
Bag of Words Meets Bags of Popcorn (kaggle.com)
On word embeddings Part I, Part II, Part III (sebastianruder.com)
The amazing power of word vectors (acolyer.org)
word2vec Parameter Learning Explained (arxiv.org)
Word2Vec Tutorial — The Skip-Gram Model, Negative Sampling(mccormickml.com)
Encoder-Decoder
Attention and Memory in Deep Learning and NLP (wildml.com)
Sequence to Sequence Models (tensorflow.org)
Sequence to Sequence Learning with Neural Networks (NIPS 2014)
Machine Learning is Fun Part 5: Language Translation with Deep Learning and the Magic of Sequences (medium.com/@ageitgey)
How to use an Encoder-Decoder LSTM to Echo Sequences of Random Integers(machinelearningmastery.com)
tf-seq2seq (google.github.io)
Python
7 Steps to Mastering Machine Learning With Python (kdnuggets.com)
An example machine learning notebook (nbviewer.jupyter.org)
例子
How To Implement The Perceptron Algorithm From Scratch In Python(machinelearningmastery.com)
Implementing a Neural Network from Scratch in Python (wildml.com)
A Neural Network in 11 lines of Python (iamtrask.github.io)
Implementing Your Own k-Nearest Neighbour Algorithm Using Python(kdnuggets.com)
Demonstration of Memory with a Long Short-Term Memory Network in - Python (machinelearningmastery.com)
How to Learn to Echo Random Integers with Long Short-Term Memory Recurrent Neural Networks (machinelearningmastery.com)
How to Learn to Add Numbers with seq2seq Recurrent Neural Networks(machinelearningmastery.com)
Scipy和numpy
Scipy Lecture Notes (scipy-lectures.org)
Python Numpy Tutorial (Stanford CS231n)
An introduction to Numpy and Scipy (UCSB CHE210D)
A Crash Course in Python for Scientists (nbviewer.jupyter.org)
scikit-learn
PyCon scikit-learn Tutorial Index (nbviewer.jupyter.org)
scikit-learn Classification Algorithms (github.com/mmmayo13)
scikit-learn Tutorials (scikit-learn.org)
Abridged scikit-learn Tutorials (github.com/mmmayo13)
Tensorflow
Tensorflow Tutorials (tensorflow.org)
Introduction to TensorFlow — CPU vs GPU (medium.com/@erikhallstrm)
TensorFlow: A primer (metaflow.fr)
RNNs in Tensorflow (wildml.com)
Implementing a CNN for Text Classification in TensorFlow (wildml.com)
How to Run Text Summarization with TensorFlow (surmenok.com)
PyTorch
PyTorch Tutorials (pytorch.org)
A Gentle Intro to PyTorch (gaurav.im)
Tutorial: Deep Learning in PyTorch (iamtrask.github.io)
PyTorch Examples (github.com/jcjohnson)
PyTorch Tutorial (github.com/MorvanZhou)
PyTorch Tutorial for Deep Learning Researchers (github.com/yunjey)
数学
Math for Machine Learning (ucsc.edu)
Math for Machine Learning (UMIACS CMSC422)
线性代数
An Intuitive Guide to Linear Algebra (betterexplained.com)
A Programmer’s Intuition for Matrix Multiplication (betterexplained.com)
Understanding the Cross Product (betterexplained.com)
Understanding the Dot Product (betterexplained.com)
Linear Algebra for Machine Learning (U. of Buffalo CSE574)
Linear algebra cheat sheet for deep learning (medium.com)
Linear Algebra Review and Reference (Stanford CS229)
概率
Understanding Bayes Theorem With Ratios (betterexplained.com)
Review of Probability Theory (Stanford CS229)
Probability Theory Review for Machine Learning (Stanford CS229)
Probability Theory (U. of Buffalo CSE574)
Probability Theory for Machine Learning (U. of Toronto CSC411)
微积分
How To Understand Derivatives: The Quotient Rule, Exponents, and Logarithms (betterexplained.com)
How To Understand Derivatives: The Product, Power & Chain Rules(betterexplained.com)
Vector Calculus: Understanding the Gradient (betterexplained.com)
Differential Calculus (Stanford CS224n)
Calculus Overview (readthedocs.io)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04