京公网安备 11010802034615号
经营许可证编号:京B2-20210330
收藏 | 机器学习、NLP、Python和Math最好的150余个教程
尽管机器学习的历史可以追溯到1959年,但目前,这个领域正以前所未有的速度发展。最近,我一直在网上寻找关于机器学习和NLP各方面的好资源,为了帮助到和我有相同需求的人,我整理了一份迄今为止我发现的最好的教程内容列表。
通过教程中的简介内容讲述一个概念。避免了包括书籍章节涵盖范围广,以及研究论文在教学理念上做的不好的特点。
我把这篇文章分成四个部分:机器学习、NLP、Python和数学。
每个部分中都包含了一些主题文章,但是由于材料巨大,每个部分不可能包含所有可能的主题,我将每个主题限制在5到6个教程中。(由于微信不能插入外链,请点击“阅读原文”查看原文)
机器学习
Machine Learning is Fun! (medium.com/@ageitgey)
Machine Learning Crash Course: Part I, Part II, Part III (Machine Learning at Berkeley)
An Introduction to Machine Learning Theory and Its Applications: A Visual Tutorial with Examples (toptal.com)
A Gentle Guide to Machine Learning (monkeylearn.com)
Which machine learning algorithm should I use? (sas.com)
激活和损失函数
Sigmoid neurons (neuralnetworksanddeeplearning.com)
What is the role of the activation function in a neural network? (quora.com)
Comprehensive list of activation functions in neural networks with pros/cons(stats.stackexchange.com)
Activation functions and it’s types-Which is better? (medium.com)
Making Sense of Logarithmic Loss (exegetic.biz)
Loss Functions (Stanford CS231n)
L1 vs. L2 Loss function (rishy.github.io)
The cross-entropy cost function (neuralnetworksanddeeplearning.com)
Bias
Role of Bias in Neural Networks (stackoverflow.com)
Bias Nodes in Neural Networks (makeyourownneuralnetwork.blogspot.com)
What is bias in artificial neural network? (quora.com)
感知器
Perceptrons (neuralnetworksanddeeplearning.com)
The Perception (natureofcode.com)
Single-layer Neural Networks (Perceptrons) (dcu.ie)
From Perceptrons to Deep Networks (toptal.com)
回归
Introduction to linear regression analysis (duke.edu)
Linear Regression (ufldl.stanford.edu)
Linear Regression (readthedocs.io)
Logistic Regression (readthedocs.io)
Simple Linear Regression Tutorial for Machine Learning(machinelearningmastery.com)
Logistic Regression Tutorial for Machine Learning(machinelearningmastery.com)
Softmax Regression (ufldl.stanford.edu)
梯度下降算法
Learning with gradient descent (neuralnetworksanddeeplearning.com)
Gradient Descent (iamtrask.github.io)
How to understand Gradient Descent algorithm (kdnuggets.com)
An overview of gradient descent optimization algorithms(sebastianruder.com)
Optimization: Stochastic Gradient Descent (Stanford CS231n)
生成式学习
Generative Learning Algorithms (Stanford CS229)
A practical explanation of a Naive Bayes classifier (monkeylearn.com)
支持向量机
An introduction to Support Vector Machines (SVM) (monkeylearn.com)
Support Vector Machines (Stanford CS229)
Linear classification: Support Vector Machine, Softmax (Stanford 231n)
反向传播
Yes you should understand backprop (medium.com/@karpathy)
Can you give a visual explanation for the back propagation algorithm for neural - networks? (github.com/rasbt)
How the backpropagation algorithm works(neuralnetworksanddeeplearning.com)
Backpropagation Through Time and Vanishing Gradients (wildml.com)
A Gentle Introduction to Backpropagation Through Time(machinelearningmastery.com)
Backpropagation, Intuitions (Stanford CS231n)
深度学习
Deep Learning in a Nutshell (nikhilbuduma.com)
A Tutorial on Deep Learning (Quoc V. Le)
What is Deep Learning? (machinelearningmastery.com)
What’s the Difference Between Artificial Intelligence, Machine Learning, and Deep - Learning? (nvidia.com)
优化和降维
Seven Techniques for Data Dimensionality Reduction (knime.org)
Principal components analysis (Stanford CS229)
Dropout: A simple way to improve neural networks (Hinton @ NIPS 2012)
How to train your Deep Neural Network (rishy.github.io)
长短期记忆网络
A Gentle Introduction to Long Short-Term Memory Networks by the Experts(machinelearningmastery.com)
Understanding LSTM Networks (colah.github.io)
Exploring LSTMs (echen.me)
Anyone Can Learn To Code an LSTM-RNN in Python (iamtrask.github.io)
卷积神经网络
Introducing convolutional networks (neuralnetworksanddeeplearning.com)
Deep Learning and Convolutional Neural Networks(medium.com/@ageitgey)
Conv Nets: A Modular Perspective (colah.github.io)
Understanding Convolutions (colah.github.io)
递归神经网络
Recurrent Neural Networks Tutorial (wildml.com)
Attention and Augmented Recurrent Neural Networks (distill.pub)
The Unreasonable Effectiveness of Recurrent Neural Networks(karpathy.github.io)
A Deep Dive into Recurrent Neural Nets (nikhilbuduma.com)
强化学习
Simple Beginner’s guide to Reinforcement Learning & its implementation(analyticsvidhya.com)
A Tutorial for Reinforcement Learning (mst.edu)
Learning Reinforcement Learning (wildml.com)
Deep Reinforcement Learning: Pong from Pixels (karpathy.github.io)
生成对抗网络
What’s a Generative Adversarial Network? (nvidia.com)
Abusing Generative Adversarial Networks to Make 8-bit Pixel Art(medium.com/@ageitgey)
An introduction to Generative Adversarial Networks (with code in - TensorFlow) (aylien.com)
Generative Adversarial Networks for Beginners (oreilly.com)
多任务学习
An Overview of Multi-Task Learning in Deep Neural Networks(sebastianruder.com)
自然语言处理
A Primer on Neural Network Models for Natural Language Processing (Yoav Goldberg)
The Definitive Guide to Natural Language Processing (monkeylearn.com)
Introduction to Natural Language Processing (algorithmia.com)
Natural Language Processing Tutorial (vikparuchuri.com)
Natural Language Processing (almost) from Scratch (arxiv.org)
深入学习和NLP
Deep Learning applied to NLP (arxiv.org)
Deep Learning for NLP (without Magic) (Richard Socher)
Understanding Convolutional Neural Networks for NLP (wildml.com)
Deep Learning, NLP, and Representations (colah.github.io)
Embed, encode, attend, predict: The new deep learning formula for state-of-the-art NLP models (explosion.ai)
Understanding Natural Language with Deep Neural Networks Using Torch(nvidia.com)
Deep Learning for NLP with Pytorch (pytorich.org)
词向量
Bag of Words Meets Bags of Popcorn (kaggle.com)
On word embeddings Part I, Part II, Part III (sebastianruder.com)
The amazing power of word vectors (acolyer.org)
word2vec Parameter Learning Explained (arxiv.org)
Word2Vec Tutorial — The Skip-Gram Model, Negative Sampling(mccormickml.com)
Encoder-Decoder
Attention and Memory in Deep Learning and NLP (wildml.com)
Sequence to Sequence Models (tensorflow.org)
Sequence to Sequence Learning with Neural Networks (NIPS 2014)
Machine Learning is Fun Part 5: Language Translation with Deep Learning and the Magic of Sequences (medium.com/@ageitgey)
How to use an Encoder-Decoder LSTM to Echo Sequences of Random Integers(machinelearningmastery.com)
tf-seq2seq (google.github.io)
Python
7 Steps to Mastering Machine Learning With Python (kdnuggets.com)
An example machine learning notebook (nbviewer.jupyter.org)
例子
How To Implement The Perceptron Algorithm From Scratch In Python(machinelearningmastery.com)
Implementing a Neural Network from Scratch in Python (wildml.com)
A Neural Network in 11 lines of Python (iamtrask.github.io)
Implementing Your Own k-Nearest Neighbour Algorithm Using Python(kdnuggets.com)
Demonstration of Memory with a Long Short-Term Memory Network in - Python (machinelearningmastery.com)
How to Learn to Echo Random Integers with Long Short-Term Memory Recurrent Neural Networks (machinelearningmastery.com)
How to Learn to Add Numbers with seq2seq Recurrent Neural Networks(machinelearningmastery.com)
Scipy和numpy
Scipy Lecture Notes (scipy-lectures.org)
Python Numpy Tutorial (Stanford CS231n)
An introduction to Numpy and Scipy (UCSB CHE210D)
A Crash Course in Python for Scientists (nbviewer.jupyter.org)
scikit-learn
PyCon scikit-learn Tutorial Index (nbviewer.jupyter.org)
scikit-learn Classification Algorithms (github.com/mmmayo13)
scikit-learn Tutorials (scikit-learn.org)
Abridged scikit-learn Tutorials (github.com/mmmayo13)
Tensorflow
Tensorflow Tutorials (tensorflow.org)
Introduction to TensorFlow — CPU vs GPU (medium.com/@erikhallstrm)
TensorFlow: A primer (metaflow.fr)
RNNs in Tensorflow (wildml.com)
Implementing a CNN for Text Classification in TensorFlow (wildml.com)
How to Run Text Summarization with TensorFlow (surmenok.com)
PyTorch
PyTorch Tutorials (pytorch.org)
A Gentle Intro to PyTorch (gaurav.im)
Tutorial: Deep Learning in PyTorch (iamtrask.github.io)
PyTorch Examples (github.com/jcjohnson)
PyTorch Tutorial (github.com/MorvanZhou)
PyTorch Tutorial for Deep Learning Researchers (github.com/yunjey)
数学
Math for Machine Learning (ucsc.edu)
Math for Machine Learning (UMIACS CMSC422)
线性代数
An Intuitive Guide to Linear Algebra (betterexplained.com)
A Programmer’s Intuition for Matrix Multiplication (betterexplained.com)
Understanding the Cross Product (betterexplained.com)
Understanding the Dot Product (betterexplained.com)
Linear Algebra for Machine Learning (U. of Buffalo CSE574)
Linear algebra cheat sheet for deep learning (medium.com)
Linear Algebra Review and Reference (Stanford CS229)
概率
Understanding Bayes Theorem With Ratios (betterexplained.com)
Review of Probability Theory (Stanford CS229)
Probability Theory Review for Machine Learning (Stanford CS229)
Probability Theory (U. of Buffalo CSE574)
Probability Theory for Machine Learning (U. of Toronto CSC411)
微积分
How To Understand Derivatives: The Quotient Rule, Exponents, and Logarithms (betterexplained.com)
How To Understand Derivatives: The Product, Power & Chain Rules(betterexplained.com)
Vector Calculus: Understanding the Gradient (betterexplained.com)
Differential Calculus (Stanford CS224n)
Calculus Overview (readthedocs.io)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01