各种相似度计算的python实现
在数据挖掘中有很多地方要计算相似度,比如聚类分析和协同过滤。计算相似度的有许多方法,其中有欧几里德距离、曼哈顿距离、Jaccard系数和皮尔逊相关度等等。我们这里把一些常用的相似度计算方法,用python进行实现以下。如果是初学者,我认为把公式先写下来,然后再写代码去实现比较好。
欧几里德距离
几个数据集之间的相似度一般是基于每对对象间的距离计算。最常用的当然是欧几里德距离,其公式为:
#-*-coding:utf-8 -*-
#计算欧几里德距离:
def euclidean(p,q):
#如果两数据集数目不同,计算两者之间都对应有的数
same = 0
for i in p:
if i in q:
same +=1
#计算欧几里德距离,并将其标准化
e = sum([(p[i] - q[i])**2 for i in range(same)])
return 1/(1+e**.5)
我们用数据集可以去算一下:
p = [1,3,2,3,4,3]
q = [1,3,4,3,2,3,4,3]
print euclidean(p,q)
得出结果是:0.261203874964
皮尔逊相关度
几个数据集中出现异常值的时候,欧几里德距离就不如皮尔逊相关度‘稳定’,它会在出现偏差时倾向于给出更好的结果。其公式为:
-*-coding:utf-8 -*-
#计算皮尔逊相关度:
def pearson(p,q):
#只计算两者共同有的
same = 0
for i in p:
if i in q:
same +=1
n = same
#分别求p,q的和
sumx = sum([p[i] for i in range(n)])
sumy = sum([q[i] for i in range(n)])
#分别求出p,q的平方和
sumxsq = sum([p[i]**2 for i in range(n)])
sumysq = sum([q[i]**2 for i in range(n)])
#求出p,q的乘积和
sumxy = sum([p[i]*q[i] for i in range(n)])
# print sumxy
#求出pearson相关系数
up = sumxy - sumx*sumy/n
down = ((sumxsq - pow(sumxsq,2)/n)*(sumysq - pow(sumysq,2)/n))**.5
#若down为零则不能计算,return 0
if down == 0 :return 0
r = up/down
return r
用同样的数据集去计算:
p = [1,3,2,3,4,3]
q = [1,3,4,3,2,3,4,3]
print pearson(p,q)
得出结果是:0.00595238095238
曼哈顿距离
曼哈顿距离是另一种相似度计算方法,不是经常需要,但是我们仍然学会如何用python去实现,其公式为:
#-*-coding:utf-8 -*-
#计算曼哈顿距离:
def manhattan(p,q):
#只计算两者共同有的
same = 0
for i in p:
if i in q:
same += 1
#计算曼哈顿距离
n = same
vals = range(n)
distance = sum(abs(p[i] - q[i]) for i in vals)
return distance
用以上的数据集去计算:
p = [1,3,2,3,4,3]
q = [1,3,4,3,2,3,4,3]
print manhattan(p,q)
得出结果为4
Jaccard系数
当数据集为二元变量时,我们只有两种状态:0或者1。这个时候以上的计算相似度的方法就无法派上用场,于是我们引出Jaccard系数,这是一个能够表示两个数据集都是二元变量(也可以多元)的相似度的指标,其公式为:
#-*-coding:utf-8 -*-
# 计算jaccard系数
def jaccard(p,q):
c = [a for i in p if v in b]
return float(len(c))/(len(a)+len(b)-len(b))
#注意:在使用之前必须对两个数据集进行去重
我们用一些特殊的数据集去测试一下:
p = ['shirt','shoes','pants','socks']
q = ['shirt','shoes']
print jaccard(p,q)
得出结果是:0.5
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16