京公网安备 11010802034615号
经营许可证编号:京B2-20210330
各种相似度计算的python实现
在数据挖掘中有很多地方要计算相似度,比如聚类分析和协同过滤。计算相似度的有许多方法,其中有欧几里德距离、曼哈顿距离、Jaccard系数和皮尔逊相关度等等。我们这里把一些常用的相似度计算方法,用python进行实现以下。如果是初学者,我认为把公式先写下来,然后再写代码去实现比较好。
欧几里德距离
几个数据集之间的相似度一般是基于每对对象间的距离计算。最常用的当然是欧几里德距离,其公式为:
#-*-coding:utf-8 -*-
#计算欧几里德距离:
def euclidean(p,q):
#如果两数据集数目不同,计算两者之间都对应有的数
same = 0
for i in p:
if i in q:
same +=1
#计算欧几里德距离,并将其标准化
e = sum([(p[i] - q[i])**2 for i in range(same)])
return 1/(1+e**.5)
我们用数据集可以去算一下:
p = [1,3,2,3,4,3]
q = [1,3,4,3,2,3,4,3]
print euclidean(p,q)
得出结果是:0.261203874964
皮尔逊相关度
几个数据集中出现异常值的时候,欧几里德距离就不如皮尔逊相关度‘稳定’,它会在出现偏差时倾向于给出更好的结果。其公式为:
-*-coding:utf-8 -*-
#计算皮尔逊相关度:
def pearson(p,q):
#只计算两者共同有的
same = 0
for i in p:
if i in q:
same +=1
n = same
#分别求p,q的和
sumx = sum([p[i] for i in range(n)])
sumy = sum([q[i] for i in range(n)])
#分别求出p,q的平方和
sumxsq = sum([p[i]**2 for i in range(n)])
sumysq = sum([q[i]**2 for i in range(n)])
#求出p,q的乘积和
sumxy = sum([p[i]*q[i] for i in range(n)])
# print sumxy
#求出pearson相关系数
up = sumxy - sumx*sumy/n
down = ((sumxsq - pow(sumxsq,2)/n)*(sumysq - pow(sumysq,2)/n))**.5
#若down为零则不能计算,return 0
if down == 0 :return 0
r = up/down
return r
用同样的数据集去计算:
p = [1,3,2,3,4,3]
q = [1,3,4,3,2,3,4,3]
print pearson(p,q)
得出结果是:0.00595238095238
曼哈顿距离
曼哈顿距离是另一种相似度计算方法,不是经常需要,但是我们仍然学会如何用python去实现,其公式为:
#-*-coding:utf-8 -*-
#计算曼哈顿距离:
def manhattan(p,q):
#只计算两者共同有的
same = 0
for i in p:
if i in q:
same += 1
#计算曼哈顿距离
n = same
vals = range(n)
distance = sum(abs(p[i] - q[i]) for i in vals)
return distance
用以上的数据集去计算:
p = [1,3,2,3,4,3]
q = [1,3,4,3,2,3,4,3]
print manhattan(p,q)
得出结果为4
Jaccard系数
当数据集为二元变量时,我们只有两种状态:0或者1。这个时候以上的计算相似度的方法就无法派上用场,于是我们引出Jaccard系数,这是一个能够表示两个数据集都是二元变量(也可以多元)的相似度的指标,其公式为:
#-*-coding:utf-8 -*-
# 计算jaccard系数
def jaccard(p,q):
c = [a for i in p if v in b]
return float(len(c))/(len(a)+len(b)-len(b))
#注意:在使用之前必须对两个数据集进行去重
我们用一些特殊的数据集去测试一下:
p = ['shirt','shoes','pants','socks']
q = ['shirt','shoes']
print jaccard(p,q)
得出结果是:0.5
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30