谷歌教你学 AI-第五讲模型可视化
Google Cloud发布了名为"AI Adventures"的系列视频,用简单易懂的语言让初学者了解机器学习的方方面面。今天让我们来看到第五讲模型可视化。
观看更多国外公开课,点击"阅读原文"
回顾之前内容:
谷歌教你学 AI -第一讲机器学习是什么?
谷歌教你学 AI -第二讲机器学习的7个步骤
谷歌教你学 AI -第三讲简单易懂的估算器
谷歌教你学 AI -第四讲部署预测模型
附有中文字幕的视频如下:
AI Adventures--第五讲模型可视化
针对不方便打开视频的小伙伴,CDA字幕组也贴心的整理了文字版本,如下:
在本期的AI Adventures中,让我们一起了解如何使用TensorBoard进行模型可视化以及调试问题!
当你知道问题所在时,调试问题就容易得多。 但是随着在复杂的模型中输入训练数据,情况则会变得复杂起来。幸运的是,TensorBoard让这变得简单。
与传统编程不同,机器学习中通常有很多难预测的因素。数据的质量,模型的细微差别,需要选择的众多参数,这些都会影响到训练过程的成败。
如果有办法能够在训练过程中跟踪这些指标,并同时观察我们创建的模型结构,那么这将让我们能够调整模型并调试所看到的问题。
如今,这个抽象过程可能很难进行可视化,但幸运的是,TensorFlow有内置的解决方案!
TensorBoard
让我们看到TensorBoard,TensorFlow的内置可视化工具,这能让你完成各种事情,从观察模型结构到查看培训进度等等。
TensorFlow用到了当中计算图的理念。
这意味着,不是在传统意义上添加两个数字,而是构建一个添加操作符,并将添加的值一起作为输入。
所以当我们想到用TensorFlow训练模型时,它实际上是把所有内容作为“图表”的一部分来执行。 TensorBoard将这些模型可视化,从而你可以看到它们的样子,更重要的是,确保你已按照自己的需求连接了所有部分。
模型图可视化
下面是一个比较复杂的例子,用TensorFlow把模型图进行可视化。
TensorBoard能让我们进行缩放,平移和展开元素从而查看更多细节。这意味着我们可以在不同抽象层查看模型,这能减少视觉的复杂程度。
但是,TensorBoard不仅仅能够显示模型结构。它还可以用图表很好地绘制指标的进展。
通常,我们会绘制正确率,损失,交叉熵等等。 取决不同模型,重要的指标也不同。TensorFlow的估算器中有很多预先配置在TensorBoard中的值,所以这是一个不错的开始。
TensorBoard可以显示各种信息,包括直方图、分布、嵌入。以及模型中的音频,图片和文本数据等。这些将在之后的视频中讲到。
线性模型
我们看到下一个例子,在TensorBoard中用到我们一直在使用的线性模型。 首先我们启动TensorBoard,并指向保存了模型结构和检查点文件的目录,接着运行:
tensorboard --logdir=”/tmp/iris_model/”
这将在端口6006启动本地服务器。是的,这拼写为GOOG(即谷歌)。转到本地主机:6006,接着看到本地机器上的TensorBoard。
我们可以看到一些标量指标是默认提供的,以及线性分类器。 我们也可以展开和放大任意图表。
可以通过双击缩小。 你可以看到我们的训练进展得很好,损失在随着时间减少。 还可以确定的是,训练还没有完成,因为及时在训练尾声,损失仍然按一定速度下降。这也提示我们,也许要加长训练过程,从而充分利用该模型。
图表标签
现在让我们看到图表标签。 注意,表面上的图表非常简单。
我们可以通过单击加号展开每个块,从而查看更多信息。 例如,如果展开“线性”块,我们会看到它由多个子组件组成。 我们可以通过放大和缩小,点击并拖动来进行平移。
还要注意,我们给特征列命名为“flower_features”显示为命名的图表组件。
这可以帮助调试和识别图表的连接方式。 TensorFlow的大部分操作都可以命名,因此这是辨明模型的的好方法。
本期我们了解到,将模型和重要的训练指标进行可视化,机器学习会变得更轻松、更有趣。
TensorBoard就能让你轻松做到这点,更好的是它就内置于TensorFlow当中。
下次当你需要对机器学习进行可视化,可以试着用用TensorBoard,揭示背后的原理。
数据分析咨询请扫描二维码
数据挖掘分析是从大量数据中发现隐藏模式和有用信息的过程。尤其是在图数据挖掘中,提供了分析复杂关系和结构的独特视角。图数据 ...
2024-11-08在当今快速发展的商业环境中,提高运营效率已成为企业取得成功的关键因素。企业需要通过优化工作流程、利用技术创新和提升员工技 ...
2024-11-08Python 是一门非常适合初学者学习的编程语言。其简洁明了的语法、丰富的功能库,以及广泛的应用领域,使其成为学习编程的理想选 ...
2024-11-08在当今快速变化的商业环境中,金融数字化已经成为中小企业(SMEs)发展的关键驱动力。通过采用数字工具和技术,中小企业能够提高 ...
2024-11-08中小企业在全球经济中扮演着重要角色,然而,面对数字化浪潮,这些企业如何有效转型成为一大挑战。数字化转型不仅是技术的升级, ...
2024-11-08选择合适的数据分析方法是数据分析流程中的关键环节。它影响最终结论的准确性和可信度。在这个过程中,需要综合考虑数据的性质、 ...
2024-11-08在当今数据驱动的商业环境中,数据分析师扮演着至关重要的角色。他们帮助企业从大量数据中提取有用的洞察,从而推动决策制定和战 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,数据挖掘发挥着至关重要的作用。它不仅帮助企业从庞大的数据集中提取有价值的信息,还为企业的决策和业务运营 ...
2024-11-07数据分析可视化是一种通过图形化方式展现数据的技术,它使复杂的数据变得直观易懂,从而帮助我们更好地做出决策。在这个快速发展 ...
2024-11-07数据分析是一项至关重要的技能,尤其在当今数据驱动的世界中。Python以其强大的库和简单的语法成为了数据分析领域的佼佼者。本文 ...
2024-11-07在现代数据驱动的环境中,数据分析师扮演着至关重要的角色。他们需要掌握多种工具,以满足数据分析、处理和可视化的需求。无论是 ...
2024-11-07作为一名业务分析师,你将发现自己处于企业决策和数据驱动战略之间的桥梁位置。这个角色要求掌握一系列技能,以便有效地将数据转 ...
2024-11-07CDA中科院城市环境研究所(厦门)内训圆满成功 2017年9月12日-15日,CDA数据分析师在中科院城市环境研究所(厦门)进行了 ...
2024-11-07数据分析是现代商业和研究领域不可或缺的重要工具。无论是为了提高业务决策的准确性,还是为了发掘隐藏在数据中的潜在价值,了解 ...
2024-11-06数据分析是一个精细且有序的过程,旨在从海量数据中提取有用的信息,为决策提供有力支持。无论你是新手还是有经验的分析师,理解 ...
2024-11-06在当今竞争激烈的商业环境中,业务分析师(Business Analyst, BA)的角色变得愈加重要。随着企业对数据驱动决策的依赖加深,业务 ...
2024-11-06在现代信息技术的广阔世界中,大数据架构师扮演着至关重要的角色。他们不仅引领着企业的数据战略,还通过技术创新推动业务的不断 ...
2024-11-04在当今数字化时代,数据分析师已成为企业关键角色,帮助决策者通过数据驱动的洞察实现业务目标。成为一名成功的数据分析师,需要 ...
2024-11-03