京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅谈python类属性的访问、设置和删除方法
下面小编就为大家带来一篇浅谈python类属性的访问、设置和删除方法。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。
类属性和对象属性
我们把定义在类中的属性称为类属性,该类的所有对象共享类属性,类属性具有继承性,可以为类动态地添加类属性。
对象在创建完成后还可以为它添加额外的属性,我们把这部分属性称为对象属性,对象属性仅属于该对象,不具有继承性。
类属性和对象属性都会被包含在dir()中,而vars()是仅包含对象属性。vars()跟__dict__是等同的。
类属性和对象属性可类比于Java中的static成员和非static成员,只不python中的类属性和对象属性都是可以动态添加(和删除)的。
class A(object):
name='orisun'
def __init__(self):
self.age=10
class B(A):
city='bei jing'
def __init__(self):
self.tempurature=20
if __name__ == '__main__':
a=A()
print dir(A)
print dir(a)
print a.__dict__
print vars(a)
print
b=B()
print dir(B)
print dir(b)
print b.__dict__
print vars(b)
输出
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'name']
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'age', 'name']
{'age': 10}
{'age': 10}
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'city', 'name']
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'city', 'name', 'tempurature']
{'tempurature': 20}
{'tempurature': 20}
动态地为类添加类属性后,该类的所有对象也都添加了该属性(即使是动态添加类属性之前创建的对象)。通过实例修改属性,并不会影响其他实例的同名属性和类上的同名属性。
class A(object):
name='orisun'
def __init__(self):
self.age=10
if __name__ == '__main__':
a=A()
print dir(a)
A.city='BeiJing' #动态添加类属性,会反应到所有对象上
b=A()
A.name='zcy' #动态修改类属性,会反应到所有对象上
print dir(b)
print dir(a)
print a.name
b.name='tom' #通过实例修改属性,并不会影响其他实例的同名属性和类上的同名属性
print a.name
print A.name
print b.name
输出
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'age', 'name']
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'age', 'city', 'name']
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'age', 'city', 'name']
zcy
zcy
zcy
tom
下文中讨论的全部是类属性,不涉及对象属性。
对属性的访问、设置和删除又分为2种情况:
1.通过对象(实例)访问、设置和删除属性,即obj.attr、obj.attr=val、del obj.attr
2.通过类访问、设置和删除属性,即Cls.attr、Cls.attr=val、del Cls.attr
本文将针对这2种情况分别讨论。
Descriptor
一个Descriptor是指实现了__get__的类,实现__set__和__delete__是可选的。同时实现了__get__和__set__则称为Data Descriptor,如果只实现了__get__则称为Non-data Descriptor。
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
def __set__(self,obj,val):
pass
def __delete__(self,obj):
pass
先给一个Descriptor的示例,__get__、__set__、__delete__的作用后文再细讲。
通过实例访问属性
__getattribute__、__getattr__、__get__和__dict__[attr]都是跟属性访问相关的方法,它们的优先级:
1.当类中定义了__getattribute__方法时,则调用__getattribute__。
2.如果访问的属性存在,且
2.1 属性是个Descriptor,是调用这个属性的__get__
2.2 属性不是Descriptor,则调用__dict__[attr]
3.如果类中没有定义该属性,则调用__getattr__
4.否则,抛出异常AttributeError
验证4
class A(object):
pass
if __name__ == '__main__':
a=A()
print a.d
输出:
AttributeError: 'A' object has no attribute 'd'
验证3
class A(object):
def __getattr__(self,name):
return name+" not found in "+self.__class__.__name__+" object"
if __name__ == '__main__':
a=A()
print a.d
输出:
d not found in A object
验证2.1
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
class A(object):
d=Descriptor()
def __getattr__(self,name):
return name+" not found in "+self.__class__.__name__+" object"
if __name__ == '__main__':
a=A()
print a.d
输出:
Descriptor in A
__getattr__并没有被调用。
验证2.2
class A(object):
d=10
def __getattr__(self,name):
return name+" not found in "+self.__class__.__name__+" object"
if __name__ == '__main__':
a=A()
print a.d
输出:
__getattr__并没有被调用。
验证1
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
class A(object):
d=Descriptor()
def __getattribute__(self,name):
return '__getattribute__ '
def __getattr__(self,name):
return name+" not found in "+self.__class__.__name__+" object"
if __name__ == '__main__':
a=A()
输出:
__getattribute__
__get__和__getattr__并没有被调用。
通过实例设置属性
跟属性设置相关的方法有3个:__setattr__、__set__和__dict__[attr]=val。它们的优先级跟get正好反过来:
1.如果类中定义了__setattr__方法,则直接调用__setattr__
2.如果赋值的属性是个Descriptor,且
2.1 该Descriptor中定义了__set__,则直接调用__set__
2.2 该Descriptor中没有定义__set__,则调用__dict__[attr]=val
3.如果赋值的属性不是Descriptor,则直接调用__dict__[attr]=val
4.如果该属性不存在,则动态地添加该属性,然后调用__dict__[attr]=val进行赋值
验证4
class A(object):
pass
if __name__ == '__main__':
a=A()
a.d='hello'
print a.d
输出:
hello
验证3
class A(object):
d=10
if __name__ == '__main__':
a=A()
a.d=30
print a.d
输出:
验证2.2
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
class A(object):
d=Descriptor()
if __name__ == '__main__':
a=A()
a.d=30
print a.d
输出:
验证2.1
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
def __set__(self,instance,value):
pass
class A(object):
d=Descriptor()
if __name__ == '__main__':
a=A()
a.d=30
print a.d
输出
Descriptor in A
因为代码“a.d=30”调用了__set__,而__set__又什么都没做,所以属性d还是Descriptor对象(而非30),那么在执行"print a.d"时自然就调到了__get__
验证1
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
def __set__(self,instance,value):
print '__set__'
class A(object):
d=Descriptor()
def __setattr__(self,name,value):
print '__setattr__'
if __name__ == '__main__':
a=A()
a.d=30
print a.d
输出
__setattr__
Descriptor in A
调用了__setattr__,而__set__并没有被调到。
通过实例删除属性
调用del instance.attr进行属性删除时可能会调到__delattr__或__delete__,它们的优先级跟set雷同。
1.如果类中定义了__delattr__方法,则直接调用__delattr__
2.如果赋值的属性是个Descriptor,且该Descriptor中定义了__delete__,则直接调用__delete__
3.如果赋值的属性是个Descriptor,且该Descriptor中没有定义__delete__,则会报异常AttributeError:属性是只读的
4.如果赋值的属性不是Descriptor,也会报异常AttributeError:属性是只读的
5.如果该属性不存在,则报异常AttributeError
验证5
class A(object):
pass
if __name__ == '__main__':
a=A()
del a.d
输出
AttributeError: 'A' object has no attribute 'd'
验证4
class A(object):
d=10
if __name__ == '__main__':
a=A()
del a.d
输出
?
1
AttributeError: 'A' object attribute 'd' is read-only
验证3
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
class A(object):
d=Descriptor()
if __name__ == '__main__':
a=A()
del a.d
输出
AttributeError: 'A' object attribute 'd' is read-only
验证2
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
def __delete__(self,instance):
print '__delete__'
class A(object):
d=Descriptor()
if __name__ == '__main__':
a=A()
del a.d
输出
__delete__
验证1
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
def __delete__(self,instance):
print '__delete__'
class A(object):
d=Descriptor()
def __delattr__(self,name):
print '__delattr__'
if __name__ == '__main__':
a=A()
del a.d
输出
__delattr__
__delete__并没有被调用。
__get__ __set__ __delete__参数说明
class Descriptor(object):
def __get__(self,obj,owner):
return '__get__',self,obj,owner
def __set__(self,obj,val):
print '__set__',self,obj,val
def __delete__(self,obj):
print '__delete__',self,obj
class A(object):
d=Descriptor()
if __name__ == '__main__':
a=A()
print a.d
a.d=3
del a.d
输出
('__get__', <__main__.Descriptor object at 0x100481c10>, <__main__.A object at 0x1004a0fd0>, <class '__main__.A'>)
__set__ <__main__.Descriptor object at 0x100481c10> <__main__.A object at 0x1004a0fd0> 3
__delete__ <__main__.Descriptor object at 0x100481c10> <__main__.A object at 0x1004a0fd0>
可见,3个方法参数中的obj是Descriptor属性所在的对象,而owner参数(__get__中的owner参数)是该对象所属的类。
在上面的讨论中我们是通过实例操作属性,如果你作一下对应转换:"实例转换到类,类转换到MetaClass",那就是通过类操作属性的规则。这种对应转换也是容易理解的,应该类是用于创建对象的,而MetaClass是用于创建类的。
class MetaClass(object):
pass
class A(object):
__metaclass__=MetaClass
通过类访问属性
通过A.attr访问属性的规则为:
1.如果MetaClass中有__getattribute__,则直接返回该__getattribute__的结果。
2.如果attr是个Descriptor,则直接返回Descriptor的__get__的结果。
3.如果attr是通过属性,则直接返回attr的值
4.如果类中没有attr,且MetaClass中定义了__getattr__,则调用MetaClass中的__getattr__
5.如果类中没有attr,且MetaClass中没有定义__getattr__,则抛出异常AttributeError
通过类设置属性
通过A.attr=val给属性赋值时:
1.如果MetaClass中定义了__setattr__,则执行该__setattr__
2.如果该属性是Descriptor,且定义了__set__,则执行Descriptor的__set__
3.如果是普通属性或None-data Descriptor,则直接令attr=val
4.如果属性不存在,则动态给类添加该属性,然后进行赋值
通过类删除属性
通过del A.attr删除属性时:
1.如果MetaClass中定义了__delattr__,则执行该__delattr__
2.如果该属性是Descriptor,且定义了__delete__,则执行Descriptor的__delete__
3.如果是普通属性,或虽是Descriptor但是没有定义__delete__,则直接从A.__dict__中删除该属性
4.如果属性不存在,则抛出异常AttributeError
以上这篇浅谈python类属性的访问、设置和删除方法就是小编分享给大家的全部内容了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22