基于python yield机制的异步操作同步化编程模型
本文总结下如何在编写python代码时对异步操作进行同步化模拟,从而提高代码的可读性和可扩展性。
游戏引擎一般都采用分布式框架,通过一定的策略来均衡服务器集群的资源负载,从而保证服务器运算的高并发性和CPU高利用率,最终提高游戏的性能和负载。由于引擎的逻辑层调用是非抢占式的,服务器之间都是通过异步调用来进行通讯,导致游戏逻辑无法同步执行,所以在代码层不得不人为地添加很多回调函数,使一个原本完整的功能碎片化地分布在各个回调函数中。
异步逻辑
以游戏中的副本评分逻辑为例,在副本结束时副本管理进程需要收集副本中每个玩家的战斗信息,再结合管理进程内部的统计信息最终给出一个副本评分,发放相应奖励。因为每个玩家实体都随机分布在不同进程中,所以管理进程需要通过异步调用来获取玩家身上的战斗信息。
实现代码如下所示:
# -*- coding: gbk -*-
import random
# 玩家实体类
class Player(object):
def __init__(self, entityId):
super(Player, self).__init__()
# 玩家标识
self.entityId = entityId
def onFubenEnd(self, mailBox):
score = random.randint(1, 10)
print "onFubenEnd player %d score %d"%(self.entityId, score)
# 向副本管理进程发送自己的id和战斗信息
mailBox.onEvalFubenScore(self.entityId, score)
# 副本管理类
class FubenStub(object):
def __init__(self, players):
super(FubenStub, self).__init__()
self.players = players
def evalFubenScore(self):
self.playerRelayCnt = 0
self.totalScore = 0
# 通知每个注册的玩家,副本已经结束,索取战斗信息
for player in self.players:
player.onFubenEnd(self)
def onEvalFubenScore(self, entityId, score):
# 收到其中一个玩家的战斗信息
print "onEvalFubenScore player %d score %d"%(entityId, score)
self.playerRelayCnt += 1
self.totalScore += score
# 当收集完所有玩家的信息后,打印评分
if len(self.players) == self.playerRelayCnt:
print 'The fuben totalScore is %d'%self.totalScore
if __name__ == '__main__':
# 模拟创建玩家实体
players = [Player(i) for i in xrange(3)]
# 副本开始时,每个玩家将自己的MailBox注册到副本管理进程
fs = FubenStub(players)
# 副本进行中
# ....
# 副本结束,开始评分
fs.evalFubenScore()
代码简化了副本评分逻辑的实现,其中Player类表示游戏的玩家实体,在游戏运行时无缝地在不同服务器中切换,FubenStub表示副本的管理进程,在副本刚开始的时候该副本内所有玩家会将自己的MailBox注册到管理进程中,其中MailBox表示各个实体的远程调用句柄。在副本结束时,FubenStub首先向各个玩家发送副本结束消息,同时请求玩家的战斗信息,玩家在得到消息后,将自己的战斗信息发送给FubenStub;然后当FubenStub收集完所有玩家的信息后,最终打印副本评分。
同步逻辑
如果Player和FubenStub在同一进程中的话,那所有的操作都可以同步完成,在FubenStub向玩家发送副本结束消息的同时可以马上得到该玩家的战斗信息,实现代码如下所示:
从以上两份代码可以看到由于异步操作,FubenStub中的评分逻辑人为地分成两个功能点:1)向玩家发送副本结束消息;2)接受玩家的战斗信息;并且两个功能点分布在两个不同的函数中。如果游戏逻辑一旦复杂,势必会造成功能点分散,出现过多onXXX异步回调函数,最终导致代码的开发成本和维护成本提高,可读性和可扩展性下降。
如果有一种方法,可以让函数在异步调用时暂时挂起,并且在回调函数得到返回值后恢复执行,那么就可以用同步化的编程模式开发异步逻辑。
yield 关键字
yield 是 Python中的一个关键字,凡是函数体中出现了 yield 关键字, Python将改变整个函数的上下文,调用该函数不再返回值, 而是一个生成器对象。只有调用这个生成器的迭代函数next才能开始执行生成器对象,当生成器对象执行到包含 yield 表达式时, 函数将暂时挂起,等待下一次next调用来恢复执行,具体机制如下:
1)调用生成器对象的next方法,启动函数执行;
2)当生成器对象执行到包含 yield 表达式时, 函数挂起;
3)下一次 next 函数调用又会驱动该生成器对象继续执行此后的语句, 直到遇见下一个 yield 再次挂起;
4)如果某次 next 调用驱动了生成器继续执行, 而此后函数正常结束,生成器会抛出 StopIteration 异常;
如下代码所示:
def f():
print "Before first yield"
yield 1
print "Before second yield"
yield 2
print "After second yield"
g = f()
print "Before first next"
g.next()
print "Before second next"
g.next()
print "Before third yield"
g.next()
执行结果为:
Before first next
Before first yield
Before second next
Before second yield
Before third yield
After second yield
StopIteration
哈,有了让函数暂时挂起的机制,最后就剩下如何传递异步调用的返回值问题了。其实生成器的next函数已经实现了将参数从生成器对象内部向外传递的机制,并且python还提供了一个send函数将参数从外向生成器对象内部传递的机制,具体机制如下:
1) 调用next 函数驱动生成器时, next会同时等待生成器中下一个 yield 挂起,并将该yield后面的参数返回给next;
2)往生成器中传递参数,需要将next函数替换成send,此时send的功能与next相同(驱动生成器执行,等待返回值),同时send将后面的参数传递给生成器内部之前挂起的yield;
如下代码所示:
def f():
msg = yield 'first yield msg'
print "generator inner receive:", msg
msg = yield 'second yield msg'
print "generator inner receive:", msg
g = f()
msg = g.next()
print "generator outer receive:", msg
msg = g.send('first send msg')
print "generator outer receive:", msg
g.send('second send msg')
执行结果为:
generator outer receive: first yield msg
generator inner receive: first send msg
generator outer receive: second yield msg
generator inner receive: second send msg
StopIteration
同步化实现
好了,万事俱备只欠东风,下面就是简单对yield机制进行工程上封装以方便之后开发。下面的代码提供了一个叫IFakeSyncCall的interface,所有包含异步操作的逻辑类都可以继承这个接口:
class IFakeSyncCall(object):
def __init__(self):
super(IFakeSyncCall, self).__init__()
self.generators = {}
@staticmethod
def FAKE_SYNCALL():
def fwrap(method):
def fakeSyncCall(instance, *args, **kwargs):
instance.generators[method.__name__] = method(instance, *args, **kwargs)
func, args = instance.generators[method.__name__].next()
func(*args)
return fakeSyncCall
return fwrap
def onFakeSyncCall(self, identify, result):
try:
func, args = self.generators[identify].send(result)
func(*args)
except StopIteration:
self.generators.pop(identify)
其中interface中属性generators用来保存类中已经开始执行的生成器对象;函数FAKE_SYNCALL是一个decorator,装饰类中包含有yield的函数,改变函数的调用上下文,在fakeSyncCall内部封装了对生成器对象的next调用;函数onFakeSyncCall封装了所有onXXX函数的逻辑,其他实体通过调用这个函数传递异步回调的返回值。
下面就是经过同步化改进后的异步副本评分逻辑代码:
# -*- coding: gbk -*-
import random
class Player(object):
def __init__(self, entityId):
super(Player, self).__init__()
self.entityId = entityId
def onFubenEnd(self, mailBox):
score = random.randint(1, 10)
print "onFubenEnd player %d score %d"%(self.entityId, score)
mailBox.onFakeSyncCall('evalFubenScore', (self.entityId, score))
class FubenStub(IFakeSyncCall):
def __init__(self, players):
super(FubenStub, self).__init__()
self.players = players
@IFakeSyncCall.FAKE_SYNCALL()
def evalFubenScore(self):
totalScore = 0
for player in self.players:
entityId, score = yield (player.onFubenEnd, (self,))
print "onEvalFubenScore player %d score %d"%(entityId, score)
totalScore += score
print 'the totalScore is %d'%totalScore
if __name__ == '__main__':
players = [Player(i) for i in xrange(3)]
fs = FubenStub(players)
fs.evalFubenScore()
比较evalFubenScore函数,基本已经和原本的同步逻辑代码相差无几。
利用yield机制实现同步化编程模型的另外一个优点是可以保证所有异步调用的逻辑串行化,从而保证数据的一致性和有效性,特别是在各种异步初始化流程中可以摒弃传统的timer sleep机制,从源头上扼杀一些隐藏很深的由于数据不一致性所导致的bug。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何构建数据分析整体框架? 要让数据分析发挥其最大效能,建立一个清晰、完善的整体框架至关重要。今天,就让我们一同深入探讨 ...
2024-12-27AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26一个好的数据分析模型不仅能使分析具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。好的数据 ...
2024-12-26当下,AI 的发展堪称狂飙猛进。从 ChatGPT 横空出世到各种大语言模型(LLM)接连上线,似乎每个人的朋友圈都在讨论 AI 会不会“ ...
2024-12-26数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25在当今数字化变革的浪潮中,数据分析师这一职业正迎来前所未有的发展机遇。回想我自己初入数据分析行业时,那种既兴奋又略显谨慎 ...
2024-12-25在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19