基于python yield机制的异步操作同步化编程模型
本文总结下如何在编写python代码时对异步操作进行同步化模拟,从而提高代码的可读性和可扩展性。
游戏引擎一般都采用分布式框架,通过一定的策略来均衡服务器集群的资源负载,从而保证服务器运算的高并发性和CPU高利用率,最终提高游戏的性能和负载。由于引擎的逻辑层调用是非抢占式的,服务器之间都是通过异步调用来进行通讯,导致游戏逻辑无法同步执行,所以在代码层不得不人为地添加很多回调函数,使一个原本完整的功能碎片化地分布在各个回调函数中。
异步逻辑
以游戏中的副本评分逻辑为例,在副本结束时副本管理进程需要收集副本中每个玩家的战斗信息,再结合管理进程内部的统计信息最终给出一个副本评分,发放相应奖励。因为每个玩家实体都随机分布在不同进程中,所以管理进程需要通过异步调用来获取玩家身上的战斗信息。
实现代码如下所示:
# -*- coding: gbk -*-
import random
# 玩家实体类
class Player(object):
def __init__(self, entityId):
super(Player, self).__init__()
# 玩家标识
self.entityId = entityId
def onFubenEnd(self, mailBox):
score = random.randint(1, 10)
print "onFubenEnd player %d score %d"%(self.entityId, score)
# 向副本管理进程发送自己的id和战斗信息
mailBox.onEvalFubenScore(self.entityId, score)
# 副本管理类
class FubenStub(object):
def __init__(self, players):
super(FubenStub, self).__init__()
self.players = players
def evalFubenScore(self):
self.playerRelayCnt = 0
self.totalScore = 0
# 通知每个注册的玩家,副本已经结束,索取战斗信息
for player in self.players:
player.onFubenEnd(self)
def onEvalFubenScore(self, entityId, score):
# 收到其中一个玩家的战斗信息
print "onEvalFubenScore player %d score %d"%(entityId, score)
self.playerRelayCnt += 1
self.totalScore += score
# 当收集完所有玩家的信息后,打印评分
if len(self.players) == self.playerRelayCnt:
print 'The fuben totalScore is %d'%self.totalScore
if __name__ == '__main__':
# 模拟创建玩家实体
players = [Player(i) for i in xrange(3)]
# 副本开始时,每个玩家将自己的MailBox注册到副本管理进程
fs = FubenStub(players)
# 副本进行中
# ....
# 副本结束,开始评分
fs.evalFubenScore()
代码简化了副本评分逻辑的实现,其中Player类表示游戏的玩家实体,在游戏运行时无缝地在不同服务器中切换,FubenStub表示副本的管理进程,在副本刚开始的时候该副本内所有玩家会将自己的MailBox注册到管理进程中,其中MailBox表示各个实体的远程调用句柄。在副本结束时,FubenStub首先向各个玩家发送副本结束消息,同时请求玩家的战斗信息,玩家在得到消息后,将自己的战斗信息发送给FubenStub;然后当FubenStub收集完所有玩家的信息后,最终打印副本评分。
同步逻辑
如果Player和FubenStub在同一进程中的话,那所有的操作都可以同步完成,在FubenStub向玩家发送副本结束消息的同时可以马上得到该玩家的战斗信息,实现代码如下所示:
从以上两份代码可以看到由于异步操作,FubenStub中的评分逻辑人为地分成两个功能点:1)向玩家发送副本结束消息;2)接受玩家的战斗信息;并且两个功能点分布在两个不同的函数中。如果游戏逻辑一旦复杂,势必会造成功能点分散,出现过多onXXX异步回调函数,最终导致代码的开发成本和维护成本提高,可读性和可扩展性下降。
如果有一种方法,可以让函数在异步调用时暂时挂起,并且在回调函数得到返回值后恢复执行,那么就可以用同步化的编程模式开发异步逻辑。
yield 关键字
yield 是 Python中的一个关键字,凡是函数体中出现了 yield 关键字, Python将改变整个函数的上下文,调用该函数不再返回值, 而是一个生成器对象。只有调用这个生成器的迭代函数next才能开始执行生成器对象,当生成器对象执行到包含 yield 表达式时, 函数将暂时挂起,等待下一次next调用来恢复执行,具体机制如下:
1)调用生成器对象的next方法,启动函数执行;
2)当生成器对象执行到包含 yield 表达式时, 函数挂起;
3)下一次 next 函数调用又会驱动该生成器对象继续执行此后的语句, 直到遇见下一个 yield 再次挂起;
4)如果某次 next 调用驱动了生成器继续执行, 而此后函数正常结束,生成器会抛出 StopIteration 异常;
如下代码所示:
def f():
print "Before first yield"
yield 1
print "Before second yield"
yield 2
print "After second yield"
g = f()
print "Before first next"
g.next()
print "Before second next"
g.next()
print "Before third yield"
g.next()
执行结果为:
Before first next
Before first yield
Before second next
Before second yield
Before third yield
After second yield
StopIteration
哈,有了让函数暂时挂起的机制,最后就剩下如何传递异步调用的返回值问题了。其实生成器的next函数已经实现了将参数从生成器对象内部向外传递的机制,并且python还提供了一个send函数将参数从外向生成器对象内部传递的机制,具体机制如下:
1) 调用next 函数驱动生成器时, next会同时等待生成器中下一个 yield 挂起,并将该yield后面的参数返回给next;
2)往生成器中传递参数,需要将next函数替换成send,此时send的功能与next相同(驱动生成器执行,等待返回值),同时send将后面的参数传递给生成器内部之前挂起的yield;
如下代码所示:
def f():
msg = yield 'first yield msg'
print "generator inner receive:", msg
msg = yield 'second yield msg'
print "generator inner receive:", msg
g = f()
msg = g.next()
print "generator outer receive:", msg
msg = g.send('first send msg')
print "generator outer receive:", msg
g.send('second send msg')
执行结果为:
generator outer receive: first yield msg
generator inner receive: first send msg
generator outer receive: second yield msg
generator inner receive: second send msg
StopIteration
同步化实现
好了,万事俱备只欠东风,下面就是简单对yield机制进行工程上封装以方便之后开发。下面的代码提供了一个叫IFakeSyncCall的interface,所有包含异步操作的逻辑类都可以继承这个接口:
class IFakeSyncCall(object):
def __init__(self):
super(IFakeSyncCall, self).__init__()
self.generators = {}
@staticmethod
def FAKE_SYNCALL():
def fwrap(method):
def fakeSyncCall(instance, *args, **kwargs):
instance.generators[method.__name__] = method(instance, *args, **kwargs)
func, args = instance.generators[method.__name__].next()
func(*args)
return fakeSyncCall
return fwrap
def onFakeSyncCall(self, identify, result):
try:
func, args = self.generators[identify].send(result)
func(*args)
except StopIteration:
self.generators.pop(identify)
其中interface中属性generators用来保存类中已经开始执行的生成器对象;函数FAKE_SYNCALL是一个decorator,装饰类中包含有yield的函数,改变函数的调用上下文,在fakeSyncCall内部封装了对生成器对象的next调用;函数onFakeSyncCall封装了所有onXXX函数的逻辑,其他实体通过调用这个函数传递异步回调的返回值。
下面就是经过同步化改进后的异步副本评分逻辑代码:
# -*- coding: gbk -*-
import random
class Player(object):
def __init__(self, entityId):
super(Player, self).__init__()
self.entityId = entityId
def onFubenEnd(self, mailBox):
score = random.randint(1, 10)
print "onFubenEnd player %d score %d"%(self.entityId, score)
mailBox.onFakeSyncCall('evalFubenScore', (self.entityId, score))
class FubenStub(IFakeSyncCall):
def __init__(self, players):
super(FubenStub, self).__init__()
self.players = players
@IFakeSyncCall.FAKE_SYNCALL()
def evalFubenScore(self):
totalScore = 0
for player in self.players:
entityId, score = yield (player.onFubenEnd, (self,))
print "onEvalFubenScore player %d score %d"%(entityId, score)
totalScore += score
print 'the totalScore is %d'%totalScore
if __name__ == '__main__':
players = [Player(i) for i in xrange(3)]
fs = FubenStub(players)
fs.evalFubenScore()
比较evalFubenScore函数,基本已经和原本的同步逻辑代码相差无几。
利用yield机制实现同步化编程模型的另外一个优点是可以保证所有异步调用的逻辑串行化,从而保证数据的一致性和有效性,特别是在各种异步初始化流程中可以摒弃传统的timer sleep机制,从源头上扼杀一些隐藏很深的由于数据不一致性所导致的bug。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27