决策树之CART(分类回归树)详解,具体内容如下
1、CART分类回归树简介
CART分类回归树是一种典型的二叉决策树,可以处理连续型变量和离散型变量。如果待预测分类是离散型数据,则CART生成分类决策树;如果待预测分类是连续型数据,则CART生成回归决策树。数据对象的条件属性为离散型或连续型,并不是区别分类树与回归树的标准,例如表1中,数据对象xi的属性A、B为离散型或连续型,并是不区别分类树与回归树的标准。
表1
2、CART分类回归树分裂属性的选择
2.1 CART分类树——待预测分类为离散型数据
选择具有最小Gain_GINI的属性及其属性值,作为最优分裂属性以及最优分裂属性值。Gain_GINI值越小,说明二分之后的子样本的“纯净度”越高,即说明选择该属性(值)作为分裂属性(值)的效果越好。
对于样本集S,GINI计算如下:
其中,在样本集S中,Pk表示分类结果中第k个类别出现的频率。
对于含有N个样本的样本集S,根据属性A的第i个属性值,将数据集S划分成两部分,则划分成两部分之后,Gain_GINI计算如下:
其中,n1、n2分别为样本子集S1、S2的样本个数。
对于属性A,分别计算任意属性值将数据集划分成两部分之后的Gain_GINI,选取其中的最小值,作为属性A得到的最优二分方案:
对于样本集S,计算所有属性的最优二分方案,选取其中的最小值,作为样本集S的最优二分方案:
所得到的属性A及其第i属性值,即为样本集S的最优分裂属性以及最优分裂属性值。
2.2 CART回归树——待预测分类为连续型数据
区别于分类树,回归树的待预测分类为连续型数据。同时,区别于分类树选取Gain_GINI为评价分裂属性的指标,回归树选取Gain_σ为评价分裂属性的指标。选择具有最小Gain_σ的属性及其属性值,作为最优分裂属性以及最优分裂属性值。Gain_σ值越小,说明二分之后的子样本的“差异性”越小,说明选择该属性(值)作为分裂属性(值)的效果越好。
针对含有连续型分类结果的样本集S,总方差计算如下:
其中,μ表示样本集S中分类结果的均值,Ck表示第k个分类结果。
对于含有N个样本的样本集S,根据属性A的第i个属性值,将数据集S划分成两部分,则划分成两部分之后,Gain_σ计算如下:
对于属性A,分别计算任意属性值将数据集划分成两部分之后的Gain_σ,选取其中的最小值,作为属性A得到的最优二分方案:
对于样本集S,计算所有属性的最优二分方案,选取其中的最小值,作为样本集S的最优二分方案:
所得到的属性A及其第i属性值,即为样本集S的最优分裂属性以及最优分裂属性值。
3、CART分类回归树的剪枝
由于决策树的建立完全是依赖于训练样本,因此该决策树对训练样本能够产生完美的拟合效果。但这样的决策树对于测试样本来说过于庞大而复杂,可能产生较高的分类错误率。这种现象就称为过拟合。因此需要将复杂的决策树进行简化,即去掉一些节点解决过拟合问题,这个过程称为剪枝。
剪枝方法分为预剪枝和后剪枝两大类。预剪枝是在构建决策树的过程中,提前终止决策树的生长,从而避免过多的节点产生。预剪枝方法虽然简单但实用性不强,因为很难精确的判断何时终止树的生长。后剪枝是在决策树构建完成之后,对那些置信度不达标的节点子树用叶子结点代替,该叶子结点的类标号用该节点子树中频率最高的类标记。后剪枝方法又分为两种,一类是把训练数据集分成树的生长集和剪枝集;另一类算法则是使用同一数据集进行决策树生长和剪枝。常见的后剪枝方法有CCP(Cost Complexity Pruning)、REP(Reduced Error Pruning)、PEP(Pessimistic Error Pruning)、MEP(Minimum Error Pruning)。其中,悲观错误剪枝法PEP(Pessimistic Error Pruning)在“决策树之C4.5算法详解”中有详细介绍,感兴趣的小童鞋可以了解学习。这里我们详细介绍CART分类回归树中应用最广泛的剪枝算法——代价复杂性剪枝法CCP(Cost Complexity Pruning)。
代价复杂性剪枝法CCP(Cost Complexity Pruning)主要包含两个步骤:(1)从原始决策树T0开始生成一个子树序列{T0,T1,...,Tn},其中,Ti+1从Ti产生,Tn为根节点。(2)从第1步产生的子树序列中,根据树的真实误差估计选择最佳决策树。
CCP剪枝法步骤(1)
生成子树序列{T0,T1,...,Tn}的基本思想是从T0开始,裁剪Ti中关于训练数据集误差增加最小的分枝来得到Ti+1。实际上,当1棵树T在节点t处剪枝时,它的误差增加直观上认为是R(t)−R(Tt),其中,R(t)为在节点t的子树被裁剪后节点t的误差,R(Tt)为在节点t的子树没被裁剪时子树Tt的误差。然而,剪枝后,T的叶子数减少了L(Tt)−1,其中,L(Tt)为子树Tt的叶子数,也就是说,T的复杂性减少了。因此,考虑树的复杂性因素,树分枝被裁剪后误差增加率由下式决定:
其中,R(t)表示节点t的子树被裁剪后节点t的误差,R(t)=r(t)∗p(t),r(t)是节点t的误差率,p(t)是节点t上的样本个数与训练集中样本个数的比例。R(Tt)表示节点t的子树没被裁剪时子树Tt的误差,即子树Tt上所有叶子节点的误差之和。
Ti+1就是选择Ti中具有最小α值所对应的剪枝树。
例如:图1中ti表示决策树中第i个节点,A、B表示训练集中的两个类别,A、B之后的数据表示落入该节点分别属于A类、B类的样本个数。
图1,决策树中训练样本总个数为80。对于节点t4,其中,A类样本46个,B类样本4个,根据大多数原则,则节点t4中样本为A类,故节点t4的子树(t8、t9)被裁剪之后t4的误差为:450∗5080=480。节点t4的子树(t8、t9)被裁剪之前t4的误差为:145∗4580+25∗580=380。故α(t4)=480−3802−1=0.0125。类似过程,依次得到所有节点的误差增加率,如表2:
表2
从表2可以看出,在原始树T0行,4个非叶节点中t4的α值最小,因此,裁剪T0的t4节点的分枝得到T1;在T1行,虽然t2和t3的α值相同,但裁剪t2的分枝可以得到更小的决策树,因此,T2是裁剪T1中的t2分枝得到的。
CCP剪枝法步骤(2)
如何根据第1步产生的子树序列{T0,T1,...,Tn},选择出1棵最佳决策树是CCP剪枝法步骤(2)的关键。通常采用的方法有两种,一种是V番交叉验证(V-fold cross-validation),另一种是基于独立剪枝数据集。此处不在过分赘述,感兴趣的小童鞋,可以阅读参考文献[1][2][3]等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30