使用Python操作MySQL的一些基本方法
前奏
为了能操作数据库, 首先我们要有一个数据库, 所以要首先安装Mysql, 然后创建一个测试数据库python_test用以后面的测试使用
CREATE DATABASE `python_test` CHARSET UTF8
导入数据库模块
import MySQLdb
连接数据库
con = MySQLdb.connect(host="localhost", user="root", passwd="******",db="python_test",port=3306)
在这里, 我们虽然拿到了python的数据库连接, 但是不能在这个对象上直接对数据库进行操作, 还需要获取对应的操作游标才能进行数据库的操作,所以还需要进行下面的操作
cur = con.cursor()
创建表格
cur.execute('create table stu_info (name char(128) not null default "", age tinyint(3) not null default 0, sex enum("man","femal") not null default "man") engine=innodb charset=utf8')
#0L
cur.execute 返回执行的sql 影响的行数, 因为这里是创建数据库, 所以是0L行
但到这里还并没有真正执行了sql语句, 必须使用MySQLdb.commit才是真正执行完毕
con.commit()
到这里, 我们的表格才算真正创建完成
同理, 往表中写数据, 也是一样的操作流程 execute ==> commit
不过, 写入数据的execute 稍有不同, 如下
更新表数据
往表中写入数据时, 执行execute 方法, 有两种方式, 一种是直接execute(sql), 然后commit 完成, sql里是写入的sql 语句
cur.execute("insert into stu_info (name, age, sex) values ('Yi_Zhi_Yu',25,'man')")
con.commit()
这会直接写入表中,但还有另外一种方式,
execute 可以接受两个参数, 第一个参数是sql语句, 不过这个sql中的values的内容使用占位符%s表示,第二个参数是实际的写入的values列表, 如下:
cur.execute("insert into stu_info (name, age, sex) values (%s,%s,%s)", ("Tony",25, "man"))
con.commit()
这种方式与第一中方式相比, 更清晰一些, 安全性也更好, 能有效防止sql注入
另外, cursor还有一个executemany, 参数和execute一样, 不过第二个参数可以传递多列表值, 达到多次执行某个语句的效果
cur.executemany("insert into stu_info (name, age, sex) values (%s,%s,%s)",(("LiMei",26,"femal"),("YuanYuan",28,"femal")))
con.commit()
这里实际上就是执行了两次插入操作
数据查询
直接看例子
cur.execute("select * from stu_info")
stus = cur.fetchall()
#stus 已经是查询的结果结合了, 格式如下:
(('Yi_Zhi_Yu', 25, 'man'),
('Tony', 25, 'man'),
('LiMei', 26, 'femal'),
('YuanYuan', 28, 'femal'))
tuple形式, 我们可以通过循环输出
for stu in stus:
print "name: %s; age: %d; sex: %s" %(stu[0], stu[1], stu[2])
输出:
name: Yi_Zhi_Yu; age: 25; sex: man
name: Tony; age: 25; sex: man
name: LiMei; age: 26; sex: femal
name: YuanYuan; age: 28; sex: femal
那上面的查询虽然得到了每行的数据, 但结果集中并没有字段名, 如果要返回字段名, 如下操作:
cur = con.cursor(cursorclass=MySQLdb.cursors.DictCursor)
cur.execute("select * from stu_info")
cur.fetchall()
返回的结果集:
({'age': 25, 'name': 'Yi_Zhi_Yu', 'sex': 'man'},
{'age': 25, 'name': 'Tony', 'sex': 'man'},
{'age': 26, 'name': 'LiMei', 'sex': 'femal'},
{'age': 28, 'name': 'YuanYuan', 'sex': 'femal'})
每个元素都是一个dict, 以key-value的形式展示了每个字段和对应的值
总结
Python 中对数据的操作, 增删改均要在指针对象执行了sql语句后, 使用连接对象commit, 查询的结果使用指针对象的fetch系列方法获取
PS: 以上皆为学习笔记, 难免有错, 欢迎指正
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10