纵观大数据是如何实现自己的数据价值
大数据开启了人类数据管理史的一段崭新旅程。人类想要测量、记录和分析世界的渴望是驱动大数据技术不断向前的动力。但如同此前的电子商务、云计算等创新构想一样,大数据也不得不怀抱变革理想在现实中披荆斩棘。
我们该如何定义我们所身处的信息技术时代?是云计算、社交、移动,还是大数据?相信每位从业者和客户都会有自己的认知与解读。“一千个人眼中就有一千个哈姆雷特”,很多时候是一个放之四海皆准的道理,更何况我们正在经历一段创新趋势叠加、创新领域融合的独特时期。而对于那些想要体会技术创新真正内涵的人士,有一个话题永远不可回避,这就是技术创新到底会给其受众带来怎样的真实价值?这种价值是否能够在其被发掘后长期、持续地给予?
本文重点关注大数据技术这一重大技术创新趋势在企业环境中价值实现的过程。在全民热议的氛围中,或许我们可以暂时远离那些对大数据的定义、技术特征、未来走向的种种争论,潜心聆听喧嚣中实地探索的脚步。我们希望与您共同探讨大数据所能够开辟的数据价值转换与兑现路径,从而为企业高效、合理利用快速增长的业务数据带来启发。也希望这些来自中国企业的真实应用案例能够证明,大数据并不仅仅是一个催生布道师的舞台,它正在真切地影响着我们的工作与生活。
脚踏实地的大数据
人类的想象力有多丰富,大数据的未来世界就会有多广博。要让海量数据资源变成宝贵的商业资产,企业的大数据技术实践者们需要从现实中起步。
如今,“大数据”总会与“变革”作为联动的词汇出现。牛津大学网络学院互联网研究所治理与监管专业教授维克托·迈尔-舍恩伯格在其着作《大数据时代》一书中,将大数据定义为一次重大时代转型的开启者,称其将会引发一场生活、工作与思维的大变革。
他认为,在大数据时代,人类处理数据的方法和思维模式将被彻底改变,它会呈现出一些前所未有的现象。比方说,人们将会分析更多的数据,而不再依赖于随机采样;人们将不再沉迷于对数据分析精确度的追求,转而关注对趋势的把握;人们不会再习惯性地追问事情的因果,而是寻找事物之间的相关关系。
无论这些数据处理的未来趋势最终是否能够成真,我们都可以从日常的工作和生活中窥探到一些变化的端倪。首先,企业的数据管理范畴正在不断扩大,在线交易、Web日志、点击流、传感器信息、社交媒体数据等都被纳入企业的业务数据集。另一方面,我们在生活中会遇到越来越多与数据分析相关的商业创意。例如,各个电子商务、视频网站中花样繁多的推荐系统,还有超市中零食与手电筒这样不明所以、却能带来实际销售增长的摆放组合。
大数据对企业究竟意味着什么?舍恩伯格在《大数据时代》一书中做出了这样的描述:“在大数据时代,数据的价值从它最基本的用途转变为未来的潜在用途。这一转变意义重大,它影响了企业评估其拥有的数据及访问者的方式,促使甚至是迫使公司改变他们的商业模式,同时也改变了组织看待和使用数据的方式。”
转变并不会在一夜之间发生。从多来源的数据采集,到通过深度分析获取洞察力,之间会是一段并不平坦的征程。毫无疑问,Hadoop等技术的日趋成熟,让企业用户可以更方便地、在更大的范围内收集业务的相关数据,但同时真正的挑战也会接踵而至。这就是如何高效地处理多来源的海量数据,并且为其找到适合的商业用途。
在过去的一个月里,我们实地探访了三家正在实际部署大数据应用的企业。它们分别是京东(JD.com)、人人游戏和PPTV聚力。这三家互联网企业正在用业界前沿的数据管理思维,展开大数据技术的早期实践。同时,在它们身上也折射出全球互联网企业利用大数据的实际趋势。全球范围内与之业务相类似的在线零售巨头亚马逊(Amazon.com)、社交游戏先锋Zynga、全球最大的在线影片租赁服务商Netflix,同样处在大数据商业应用的最前沿。
另外,我们还特别加入了一个寓技术于体育竞技的轻松案例。网球赛场上细致入微的数据统计和分析背后,正是大数据技术的鼎力支持。
远观不如近临。大数据的价值实现之旅已经启程,改变就在我们的身边发生!
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20