大数据时代的军事管理变革
大数据是信息技术又一次颠覆性变革。随着大数据技术在军事领域获得应用,数据数量、数据分析和处理能力、数据主导决策,将是获得战场优势的关键。在数据领域,以少胜多、以弱胜强、以模糊胜透明,基本不可能,这将使作战形式发生质的变化。如何以数据为中心精确设计和指挥战争,成为军事管理的新焦点。
管理大师戴明与德鲁克曾同时提出,“不会量化就无法管理”。有了大数据,军事管理者可以更多借助量化,提升管理质量和水平。
大数据坚持管理服务战斗力的原则。管理是为提高战斗力服务的,最高目标就是确保打赢可能发生的任何战争。大数据并未改变这一根本原则,但增加了数据色彩。一方面,数据成为巩固和提高战斗力的重要因素。在新型作战环境下,战场的实时态势信息、作战指挥命令、卫星过境、气象水文信息、传感器信息等,都是以数据形式存在并且传输的。这些不同来源、不同类型的数据是提高战斗力的“生命”。缺乏对数据的有效管理和利用,打赢战争将成为不可能。在不远的将来,数据的积累和运用将成为战斗力的标志。军事管理就是将大数据渗透、应用于战斗力生成、转化和实现的全过程,提高战斗力的整体水平。另一方面,数据本身成为战争的攻防中心。当大数据成为举足轻重的武器,就可能开启一种崭新的战争形态——数据战。这将是一种以数据攻击与防护为基本手段的全新作战样式,它通过掠夺、破坏和摧毁敌方数据资源,化数据优势为战争优势。大数据不但是信息的集成,更是打击手段的综合。在大数据支撑下,跨网攻击具备了实现条件,即使是与互联网物理隔离的军事数据系统,也可能不再拥有绝对安全的保障,数据攻防将会拓展到陆、海、空、天、电等多维空间。这就决定了军事管理必须着眼于打赢未来数据战争需要,努力提高部队数据作战能力。
大数据拓展了军事管理内涵。大数据的现实存在和军事价值,使如何管理大数据成为军事管理必然要回答的问题。数据采集是数据管理的源头。目前,我军数据采集还存在零散多综合少、局部多全局少的问题。需要通过对蕴含军事意义数据的专业化获取,掌握海量数据开发利用的主动权。数据分析是数据管理的关键。目的是从经过整合的、多来源的数据中找出规律,最终实现对数据的有效管控。数据安全是数据管理的底线。既要有效地堵塞国家和军事安全数据漏洞,防止被敌方破坏和获取;又要深度挖掘和全面掌握敌方高价值的数据资源,寻求战时攻击的数据突破点。此外,也要把保护官兵的个人数据隐私提上日程。
大数据创新了军事管理方法。从技术方法看,大数据研发的机器学习算法、图像可视化手段、数据共享技术、人机互动设备等,将极大推动军事管理技术的革新。从行政方法看,大数据带给管理者最重要的机会是更准确地了解和把握部属的需求特征、兴趣爱好、行为倾向等。
管理变革比技术升级更关键。大数据有彻底改变管理艺术的潜力,运用大数据管理应注意以下几点:
树立大数据理念。大数据产生的影响绝不限于技术层面,本质上,它为我们观察世界提供了一种全新方法。我军与外军的差距,除了装备,还有管理上的代差。其原因之一是我军缺乏以数据为基础的管理。而未来军队的进步,正赖于建立这种精确的管理体系。数据才是管理的根本,每个管理者都应有这样的意识和观念。但也要警惕泛大数据化,提防什么事都穿鞋戴帽,冠大数据之名,却无大数据之实。
实施大数据战略。要站在战略的高度,以全面、前瞻的思维和方法来应对大数据。加强顶层设计。可在加强大数据资源的深度开发利用与大数据技术自主创新方面进行调整,尽快提出大数据发展战略,理清思路,明确任务。统一数据标准。为保证部队现有和潜在用户都能发现数据,应尽快制定数据标准,保证大数据的可视化、可获取和可利用。实现共享应用。所有数据都要能在全军范围应用,既满足于预期的用户及需求,也能用于预期之外的用户及需求。
研发大数据技术。大数据研发的重点,是发展前沿核心技术,以满足搜集、存储、管理、分析和共享海量数据的需求。我国在海量数据分析、大数据处理、分布式计算、数据可视化等一些大数据关键技术上,还存在不小的差距。可如果盲目地在军队中引进和使用国外的先进技术,无疑会威胁国家和军队安全。所以要下大力研发我国我军的大数据技术,把“数据主权”牢牢掌握在自己手里,为实现强军目标提供坚强的技术支持和安全保障。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31