逻辑斯谛回归&最大熵模型
逻辑斯谛回归和最大熵模型,从原理上看二者并不十分相关,不知是不是因为篇幅都相对较小,所以将这两部分内容放到一起。本文还是从原理、应用场景以及优缺点来做简要介绍。
1、逻辑斯谛回归
逻辑斯谛回归通过结合线性回归和Sigmod转换函数(f(x)=1/(1+exp(x))),将数值预测结果转换为不同类别的条件概率,取条件概率最大的类别为预测结果,从而实现样本的分类。
该模型可应用于各种分类场景。相比于其它分类算法,其最大的特点在于可以为预测的结果提供相应的概率值,即可以直观的分析每个样本分类结果的确信程度。
2、最大熵模型
最大熵模型是指:在所有满足约束条件的概率模型集合中,熵最大的模型是最好的;可以证明,在没有其它约束条件时,均匀分布模型是最大熵模型。
例如:P(A)+P(B)=1,按照最大熵模型得到P(A)=P(B)=0.5,也就是均匀分布。
可以从物理学的角度来理解该模型:根据热力学第二定理,如果没有外力干扰,系统的熵值是趋于不断增加的。由此,在没有其它额外参考信息的情况下,选择熵值最大的模型是最可靠的,因为没有外在动力时,宇宙本来就是趋于无序的。
延伸:和决策树模型的比对分析
粗看起来,上述模型似乎与在决策树中选用熵增最大的特征参量有点儿矛盾。因为熵增(即信息增益)最大,即意味着要得到熵最小的模型。
先明确一点:两个模型中关于熵的定义完全一样,均用来表征模型的有序程度。熵值越大,越是无序。但两个模型其实并不矛盾,理由如下:
1)二者应用的前提不同。对于最大熵模型而言,在所有满足约束条件的模型中,如果没有其他的参考信息,则选用熵最大的模型;而决策树模型中,由于提供了特征参量这样的额外参考信息,因此不能直接应用最大熵原理。
2)决策树并没有使用最小熵模型。我们都知道,完全生长决策树的熵是最小的,然而却常常不是最好的模型(容易“过拟合”),经过剪枝后的决策树反而能够反映真实数据分布。如果说树的分裂意味着熵的减小,则剪枝意味着熵的增加;这样看来,我们选择的其实是应用了所有已知信息之后熵较大的模型。
3、梯度下降和牛顿法
关键的,二者主要的不同在于:梯度下降采用平面去逼近最优解(要求函数一阶可导),牛顿法采用曲面去逼近(要求函数二阶可导),牛顿迭代法一般收敛的速度要快一些。
与梯度下降法(gradientdecend)对应的,还有梯度上升法(gradient boost);它们的原理相同,梯度下降常用来求最小值,梯度上升用来求最大值。我们在处理分类问题时,常常将其转换为损失函数最小化的问题,因此梯度下降更为常用。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16