京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言CSV文件
在R语言中,我们可以从存储在R环境外部的文件读取数据。还可以将数据写入由操作系统存储和访问的文件。 R可以读取和写入各种文件格式,如:csv,excel,xml等。
在本章中,我们将学习如何从csv文件中读取数据,然后将数据写入csv文件。 该文件应该存在于当前工作目录中,以方便R可以读取它。 当然,也可以设置自己的目录,并从那里读取文件。
获取和设置工作目录
可以使用getwd()函数来检查R工作区指向哪个目录,使用setwd()函数设置新的工作目录。
# Get and print current working directory.
print(getwd())
# Set current working directory.
# setwd("/web/com")
setwd("F:/worksp/R")
# Get and print current working directory.
print(getwd())
R
当我们执行上述代码时,会产生以下结果 -
[1] "C:/Users/Administrator/Documents"
[1] "F:/worksp/R"
Shell
注意: 此结果取决于您的操作系统和您当前正在工作的目录。
作为CSV文件输入
csv文件是一个文本文件,其中列中的值用逗号分隔。假设下面的数据存在于名为input.csv 的文件中。
您可以使用Windows记事本通过复制和粘贴此数据来创建此文件。使用记事本中的另存为所有文件(*.*)选项将文件另存为:input.csv(在目录:F:/worksp/R 下载)。
id,name,salary,start_date,dept
1,Rick,623.3,2012-01-01,IT
2,Dan,515.2,2013-09-23,Operations
3,Michelle,611,2014-11-15,IT
4,Ryan,729,2014-05-11,HR
,Gary,843.25,2015-03-27,Finance
6,Nina,578,2013-05-21,IT
7,Simon,632.8,2013-07-30,Operations
8,Guru,722.5,2014-06-17,Finance
Csv
读取CSV文件
以下是read.csv()函数的一个简单示例,用于读取当前工作目录中可用的CSV文件 -
setwd("F:/worksp/R")
data <- read.csv("input.csv")
print(data)
R
当我们执行上述代码时,会产生以下结果 -
> data <- read.csv("input.csv")
> print(data)
id name salary start_date dept
1 1 Rick 623.30 2012-01-01 IT
2 2 Dan 515.20 2013-09-23 Operations
3 3 Michelle 611.00 2014-11-15 IT
4 4 Ryan 729.00 2014-05-11 HR
5 NA Gary 843.25 2015-03-27 Finance
6 6 Nina 578.00 2013-05-21 IT
7 7 Simon 632.80 2013-07-30 Operations
8 8 Guru 722.50 2014-06-17 Finance
Shell
分析CSV文件
默认情况下,read.csv()函数将输出作为数据帧。这可以很容易地查看到,此外,我们可以检查列和行的数量。
setwd("F:/worksp/R")
data <- read.csv("input.csv")
print(is.data.frame(data))
print(ncol(data))
print(nrow(data))
R
当我们执行上述代码时,会产生以下结果 -
[1] TRUE
[1] 5
[1] 8
Shell
当我们在数据帧中读取数据,可以应用所有适用于数据帧的函数,如下一节所述。
获得最高工资
# Create a data frame.
data <- read.csv("input.csv")
# Get the max salary from data frame.
sal <- max(data$salary)
print(sal)
R
当我们执行上述代码时,会产生以下结果 -
[1] 843.25
Shell
获得最高工资的人员的详细信息
可以使用过滤条件获取符合特定的行,类似于SQL的where子句。
setwd("F:/worksp/R")
# Create a data frame.
data <- read.csv("input.csv")
# Get the max salary from data frame.
sal <- max(data$salary)
# Get the person detail having max salary.
retval <- subset(data, salary == max(salary))
print(retval)
R
当我们执行上述代码时,会产生以下结果 -
id name salary start_date dept
5 NA Gary 843.25 2015-03-27 Finance
Shell
获取IT部门的所有人员
# Create a data frame.
data <- read.csv("input.csv")
retval <- subset( data, dept == "IT")
print(retval)
R
当我们执行上述代码时,会产生以下结果 -
id name salary start_date dept
1 1 Rick 623.3 2012-01-01 IT
3 3 Michelle 611.0 2014-11-15 IT
6 6 Nina 578.0 2013-05-21 IT
Shell
获取IT部门薪水在600以上的人员
setwd("F:/worksp/R")
# Create a data frame.
data <- read.csv("input.csv")
info <- subset(data, salary > 600 & dept == "IT")
print(info)
R
当我们执行上述代码时,会产生以下结果 -
id name salary start_date dept
1 1 Rick 623.3 2012-01-01 IT
3 3 Michelle 611.0 2014-11-15 IT
Shell
获得在2014年或以后入职的人员
setwd("F:/worksp/R")
# Create a data frame.
data <- read.csv("input.csv")
retval <- subset(data, as.Date(start_date) > as.Date("2014-01-01"))
print(retval)
R
当我们执行上述代码时,会产生以下结果 -
id name salary start_date dept
3 3 Michelle 611.00 2014-11-15 IT
4 4 Ryan 729.00 2014-05-11 HR
5 NA Gary 843.25 2015-03-27 Finance
8 8 Guru 722.50 2014-06-17 Finance
Shell
写入CSV文件
R可以从现有数据帧中来创建csv文件。write.csv()函数用于创建csv文件。 该文件在工作目录中创建。参考以下示例代码 -
setwd("F:/worksp/R")
# Create a data frame.
data <- read.csv("input.csv")
retval <- subset(data, as.Date(start_date) > as.Date("2014-01-01"))
# print(retval)
# Write filtered data into a new file.
write.csv(retval,"output.csv")
newdata <- read.csv("output.csv")
print(newdata)
R
当我们执行上述代码时,会产生以下结果 -
X id name salary start_date dept
1 3 3 Michelle 611.00 2014-11-15 IT
2 4 4 Ryan 729.00 2014-05-11 HR
3 5 NA Gary 843.25 2015-03-27 Finance
4 8 8 Guru 722.50 2014-06-17 Finance
Shell
这里列X来自数据集更新器。在编写文件时可以使用其他参数来删除它。
setwd("F:/worksp/R")
# Create a data frame.
data <- read.csv("input.csv")
retval <- subset(data, as.Date(start_date) > as.Date("2014-01-01"))
# Write filtered data into a new file.
write.csv(retval,"output.csv", row.names = FALSE)
newdata <- read.csv("output.csv")
print(newdata)
R
当我们执行上述代码时,会产生以下结果 -
id name salary start_date dept
1 3 Michelle 611.00 2014-11-15 IT
2 4 Ryan 729.00 2014-05-11 HR
3 NA Gary 843.25 2015-03-27 Finance
4 8 Guru 722.50 2014-06-17 Finance
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15