大数据时代信息安全隐患
近年来,随着信息数据的爆炸式增长,数据的财富转换率也出现了大幅度的增长。这就造成了一个大数据时代的背景。很多人都把数据的增长看做了未来最重要的财富。但是数据的大幅增长,给越来越多的人敲响了警钟:大数据时代的数据安全十分的脆弱!没有安全的数据是缺乏足够财富支撑的,因此很多企业开始着手建立自己的新型数据安全模式,虽然这个过程显得是十分的残酷艰难,但是一切都势在必行,刻不容缓。
2012年很多国际IT巨头都推出了自己的云服务,许多企业都购买了公有云,或是建立了私有云。云计算时代的到来促进了网络数据的高速发展,在过去的三年里增长的数据甚至超越了人类几百年的数据增长。这些数据的出现意味着巨大的财富,但是数据的非结构化和安全隐患不断增加,让这些数据的价值没能够得到充分的发掘。一方面由于现有技术对于信息开发的成本过大,限制了数据的价值,另一方面由于数据安全得不到足够的保证,也阻碍了数据财富化的进程。数据开发成本的优化是一个缓慢的过程,人们更希望能够得到安全保护的同时,缓慢的去开发数据价值,这也把大数据时代的数据安全问题推到了风头浪尖,这是对于数据安全开发者的一次严峻考验。
大数据时代的数据安全怎么做?对于这个问题有着不同的理解。有的人认为需要在原有安全的基础上加入新的的网络元素,继续沿用既有的数据安全思路,稳中求进;有的人认为需要重新构建全新的数据安全模式,打破原有的桎梏,重组现有技术构成,建立全新的数据安全模式。这两种看法都可以看做一种对于大数据时代特性的适应,很难说孰优孰劣,只能说大家的发展路线不同,思路不同。
主张在原有安全基础上发展的人们认为,原有的端点数据安全模式十分的稳定,具有较长的运用经验,安全可靠高效。现在的云端技术对于数据安全的要求主要体现在网络安全的应对上。对于传统的端点安全技术来说,有多种方式可以实现最终的安全。面对现有的大数据特性,需要在一些方面做出调整。一般来说有以下的几个方面需要改进。
第一,大数据时代的数据结构化。数据结构化对于数据安全和开发有着非常重要的作用。大数据时代的数据非常的繁杂,其数量非常的惊人,对于很多企业来说,怎样保证这些信息数据在有效利用之前的安全是一个十分严肃的问题。结构化的数据便于管理和加密,更便于处理和分类,能够有效的智能分辨非法入侵数据,保证数据的安全。数据结构化虽然不能够彻底改变数据安全的格局,但是能够加快数据安全系统的处理效率。未来数据标准化,结构化是一个大趋势,不管是怎样的数据安全模式都希望自己的数据更加的标准。
第二,网络层的安全策略是端点数据安全的重点加固对象。常规的数据安全模式往往喜欢分层构建。这也是数据安全的常规做法。现有的端点安全方式对于网络层的安全防护并不完美。一方面是大数据时代的信息爆炸,导致网端的非法入侵次数急剧增长,这对于网络层的考验十分的严峻,另一方面由于云计算的大趋势,现在的网络数据威胁方式和方法越来越难以预测辨识,这给现有的端点数据安全模式造成了巨大的压力。在未来,网络层安全应当作为重点发展的一个层面。在加强网络层数据辨识智能化,结构化的基础上加上于本地系统的相互监控协调,同时杜绝非常态数据的运行,这样就能够在网络层构筑属于大数据时代的全面安全堡垒,完善自身的缺陷。
第三,本地策略的升级。对于端点数据安全来说已经具备了成熟的本地安全防护系统,但是由于思路的转化,现有的端点数据安全系统有一定认识上的偏差,需要进行及时的调整。由于大数据时代的数据财富化导致了大量的信息泄露事件,而这些泄露事件中,来自内部的威胁更大。所以在本地策略的构建上需要加入对于内部管理的监控,监管手段。用纯数据的模式来避免由于人为原因造成的数据流失,信息泄露。由这一点出发我们可以预想到在未来的数据安全模式中,管理者的角色权重逐渐分化,数据本身的自我监控和智能管理将代替一大部分人为的操作。这对于大部分企业来说都是能够减少损失和成本的大事情,值得引起大家的关注和思考。在本地安全策略的构建过程中还要加强与各个环节的协调。由于现在的数据处理方式往往会依托与网络,所以在数据的处理过程中会出现大量的数据调用,在调用过程中就容易出现很大的安全威胁。这个时候如果能够把本地和网络的链接做的更细腻,完善缓存机制和储存规则,就能够有效保证数据源的纯洁,从根本上杜绝数据的安全威胁。本地数据安全策略还有很多需要注意的问题,也有很多还没有发现的隐患,这些都需要在完善自有系统的基础上,继续开发。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10