
R中五种常用的统计分析方法
1、分组分析aggregation
根据分组字段,将分析对象划分为不同的部分,以进行对比分析各组之间差异性的一种分析方法。
常用统计指标:
计数 length
求和 sum
平均值 mean
标准差 var
方差 sd
分组统计函数
aggregate(分组表达式,data=需要分组的数据框,function=统计函数)
参数说明
formula:分组表达式,格式:统计列~分组列1+分组列2+...
data=需要分组的数据框
function:统计函数
aggregate(name ~ class, data=data, FUN=length);
#求和
aggregate(score ~ class, data=data, FUN=sum);
#均值
aggregate(score ~ class, data=data, FUN=mean);
#方差
aggregate(score ~ class, data=data, FUN=var);
#标准差
aggregate(score ~ class, data=data, FUN=sd)
2、分布分析cut
根据分析目的,将数据(定量数据)进行等距或者不等距的分组,进行研究各组分布规律的一种分析方法。
分组函数
cut(data,breaks,labels,right)
参数说明
data=需要分组的一列数据
breaks=分组条件,如果是一个数字,那么将平均分组;如果是一个数组,那么将按照指定范围分组
labels:分组标签
right:指定范围是否右闭合,默认为右闭合,right参数为TRUE
用户明细 <- read.csv('data.csv', stringsAsFactors=FALSE)
head(用户明细)
breaks <- c(min(用户明细$年龄)-1, 20, 30, 40, max(用户明细$年龄)+1)
年龄分组 <- cut(用户明细$年龄, breaks = breaks)
用户明细[, '年龄分组1'] <- 年龄分组
年龄分组 <- cut(用户明细$年龄, breaks = breaks, right = FALSE)
用户明细[, '年龄分组2'] <- 年龄分组
labels <- c('20岁以及以下', '21岁到30岁', '31岁到40岁', '41岁以上');
年龄分组 <- cut(用户明细$年龄, breaks = breaks, labels = labels)
用户明细[, '年龄分组'] <- 年龄分组
head(用户明细)
aggregate(formula=用户ID ~ 年龄分组, data=用户明细, FUN=length)
3、交叉分析tapply(相当于excel里的数据透视表)
通常用于分析两个或两个以上,分组变量之间的关系,以交叉表形式进行变量间关系的对比分析;
交叉分析的原理就是从数据的不同维度,综合进行分组细分,以进一步了解数据的构成、分布特征。
交叉分析函数:
tapply(统计向量,list(数据透视表中的行,数据透视变中的列),FUN=统计函数)
返回值说明:
一个table类型的统计量
breaks <- c(min(用户明细$年龄)-1, 20, 30, 40, max(用户明细$年龄)+1)
labels <- c('20岁以及以下', '21岁到30岁', '31岁到40岁', '41岁以上');
年龄分组 <- cut(用户明细$年龄, breaks = breaks, labels = labels)
用户明细[, '年龄分组'] <- 年龄分组
head(用户明细)
tapply(用户明细$用户ID, list(用户明细$年龄分组, 用户明细$性别), FUN=length)
4、结构分析prop.table
是在分组的基础上,计算各组成部分所占的比重,进而分析总体内部特征的一种分析方法。
for example:资产占有率就是一个非常经典的运用
统计占比函数
prop.table(table,margin=NULL)
参数说明:
table,使用tapply函数统计得到的分组计数或求和结果
margin,占比统计方式,具体参数如下:
属性注释
1按行统计占比
2按列统计占比
NULL按整体统计占比
data <- read.csv('data.csv', stringsAsFactors=FALSE);
head(data)
t <- tapply(data$月消费.元., list(data$通信品牌), sum)
t
prop.table(t);
t <- tapply(data$月消费.元., list(data$通信品牌), mean)
t
prop.table(t);
t <- tapply(data$月消费.元., list(data$省份, data$通信品牌), sum)
t
prop.table(t, margin = 2)
5、相关分析prop.table
是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。
相关系数r 可以用来描述定量变量之间的关系
相关分析函数:
cor(向量1,向量2,...)返回值:table类型的统计量
data <- read.csv('data.csv', fileEncoding = "UTF-8");
cor(data[, 2:7])
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03