京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R中五种常用的统计分析方法
1、分组分析aggregation
根据分组字段,将分析对象划分为不同的部分,以进行对比分析各组之间差异性的一种分析方法。
常用统计指标:
计数 length
求和 sum
平均值 mean
标准差 var
方差 sd
分组统计函数
aggregate(分组表达式,data=需要分组的数据框,function=统计函数)
参数说明
formula:分组表达式,格式:统计列~分组列1+分组列2+...
data=需要分组的数据框
function:统计函数
aggregate(name ~ class, data=data, FUN=length);
#求和
aggregate(score ~ class, data=data, FUN=sum);
#均值
aggregate(score ~ class, data=data, FUN=mean);
#方差
aggregate(score ~ class, data=data, FUN=var);
#标准差
aggregate(score ~ class, data=data, FUN=sd)
2、分布分析cut
根据分析目的,将数据(定量数据)进行等距或者不等距的分组,进行研究各组分布规律的一种分析方法。
分组函数
cut(data,breaks,labels,right)
参数说明
data=需要分组的一列数据
breaks=分组条件,如果是一个数字,那么将平均分组;如果是一个数组,那么将按照指定范围分组
labels:分组标签
right:指定范围是否右闭合,默认为右闭合,right参数为TRUE
用户明细 <- read.csv('data.csv', stringsAsFactors=FALSE)
head(用户明细)
breaks <- c(min(用户明细$年龄)-1, 20, 30, 40, max(用户明细$年龄)+1)
年龄分组 <- cut(用户明细$年龄, breaks = breaks)
用户明细[, '年龄分组1'] <- 年龄分组
年龄分组 <- cut(用户明细$年龄, breaks = breaks, right = FALSE)
用户明细[, '年龄分组2'] <- 年龄分组
labels <- c('20岁以及以下', '21岁到30岁', '31岁到40岁', '41岁以上');
年龄分组 <- cut(用户明细$年龄, breaks = breaks, labels = labels)
用户明细[, '年龄分组'] <- 年龄分组
head(用户明细)
aggregate(formula=用户ID ~ 年龄分组, data=用户明细, FUN=length)
3、交叉分析tapply(相当于excel里的数据透视表)
通常用于分析两个或两个以上,分组变量之间的关系,以交叉表形式进行变量间关系的对比分析;
交叉分析的原理就是从数据的不同维度,综合进行分组细分,以进一步了解数据的构成、分布特征。
交叉分析函数:
tapply(统计向量,list(数据透视表中的行,数据透视变中的列),FUN=统计函数)
返回值说明:
一个table类型的统计量
breaks <- c(min(用户明细$年龄)-1, 20, 30, 40, max(用户明细$年龄)+1)
labels <- c('20岁以及以下', '21岁到30岁', '31岁到40岁', '41岁以上');
年龄分组 <- cut(用户明细$年龄, breaks = breaks, labels = labels)
用户明细[, '年龄分组'] <- 年龄分组
head(用户明细)
tapply(用户明细$用户ID, list(用户明细$年龄分组, 用户明细$性别), FUN=length)
4、结构分析prop.table
是在分组的基础上,计算各组成部分所占的比重,进而分析总体内部特征的一种分析方法。
for example:资产占有率就是一个非常经典的运用
统计占比函数
prop.table(table,margin=NULL)
参数说明:
table,使用tapply函数统计得到的分组计数或求和结果
margin,占比统计方式,具体参数如下:
属性注释
1按行统计占比
2按列统计占比
NULL按整体统计占比
data <- read.csv('data.csv', stringsAsFactors=FALSE);
head(data)
t <- tapply(data$月消费.元., list(data$通信品牌), sum)
t
prop.table(t);
t <- tapply(data$月消费.元., list(data$通信品牌), mean)
t
prop.table(t);
t <- tapply(data$月消费.元., list(data$省份, data$通信品牌), sum)
t
prop.table(t, margin = 2)
5、相关分析prop.table
是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。
相关系数r 可以用来描述定量变量之间的关系
相关分析函数:
cor(向量1,向量2,...)返回值:table类型的统计量
data <- read.csv('data.csv', fileEncoding = "UTF-8");
cor(data[, 2:7])
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29