热线电话:13121318867

登录
首页精彩阅读避免这7个数据错误,让你的数据分析更有效率
避免这7个数据错误,让你的数据分析更有效率
2018-02-24
收藏

避免这7个数据错误,让你的数据分析更有效率

数据正在成为现代企业的一个更重要的工具,几乎可以作为一种货币,它可以从衡量营销活动的有效性到评估员工绩效等方面促进一切。但许多企业家认为数据本身就是有价值的。企业拥有的数据越多越好,如果有的话,企业会做出更好的决定,此时数据分析师就担任的重要角色。

事实上,收集数据只是开展业务过程的第一步,单凭数据就无法对企业业务进行全面准确的描述。

如果企业想要获得成功的话,也需要能够有效地收集、组织、解释、展示这些数据,而大多数人都犯了阻止他们这样做的严重错误。

最常见的错误

在数据分析中一定避免这些严重的错误:

1.没有收集足够的数据。采用“越多数据越好”的理念来运行业务是一个糟糕的主意,因为它没有将数量与优先级相区分。但是,在开始信任这种结论之前,企业需要最少量的数据。例如,如果企业有1000个客户,则无法选择其中的2个进行访问,因此企业需要一个更大、更具代表性的样本量。

2.收集错误的数据类型。企业也可能收集错误的数据类型。如果企业经营的是一家汽车维修店,却了解目标人群的饮食习惯,那么这些信息对其不会有帮助。当然,这是一个令人震惊的例子,但原理是一样的。企业需要收集数据点,以便你得出结论并采取行动,而不是为了收集数据而收集数据。

3.使用错误的仪表板。企业的仪表板对其结果的影响比人们想象的要大。这些工具负责将企业的所有数据收集在一个地方,为其提供强化数据和生成报告,并为多个团队成员提供访问权限。有这么多的选项可供选择,很难说哪一个是企业业务的正确选择,但是如果企业想要获得最好的工具,则需要通读所有这些选项。否则,企业可能会花费过多的时间来培训新员工,或者生成没有强调关键变量的乏味报告。

4.容许偏见扭曲自己的结论。人的思想有很大的缺陷,因此在分析数据时相信自己的直觉通常是一个坏主意。人们很容易出现一系列的认知偏差,从确认偏差到生存偏差,甚至可能很快扭曲人们面前的客观信息。最好是学习这些认知偏差,并找出弥补方法,所以人们的结论不会混乱或扭曲。

5.比较苹果和橙子。大多数新手试图在没有进行比较的时候达到目的,将一个选择的数据与另一个选择的数据相比较。这种“苹果对橙子”的比较可能会导致错误的结论,所以最好尽可能地比较自己的数据集。

6.未能隔离变量。现代应用程序通常需要审查数十个甚至数百个不同的变量,尤其是在营销行业。当企业发现一个相关性,如内容长度和访问者之间的关系时,很容易得出因果关系,但是这是很危险的(有时候也是搞笑的)。相反,企业需要隔离正在使用的变量,以便可以证明或反驳因果关系,并了解更多关于数据点之间的关系。

7.提出错误的问题。数据本身不会给企业任何结论。企业的图表和图形通常不会带来一个明显的突破。相反,企业需要提问您的数据,并使用所需的工具来发现答案。如果所问的是错误的问题,无论是误导性的还是不可行的,数据的性能如何,或者工具的直观程度如何,都无关紧要。

数据并不完美

数据是如此有价值以至于已经变得商品化,这是事实,但除非你知道如何有效地使用数据,否则它实际上是毫无价值的。企业的方法,组织方法,甚至是其解释总是会出现问题,但是企业对最佳实践的熟悉程度越高,就越有责任有效地利用其数据,企业就越有可能获得准确、有价值的结论。不要认为自己的努力正在发挥作用,挑战他们,并不断调整自己的方法,发现隐藏的偏见,提出更好的问题,并从分析工作中获得更多的价值。


数据分析咨询请扫描二维码

若不方便扫码,搜微信号:CDAshujufenxi

最新资讯
更多
客服在线
立即咨询