
简单易学的机器学习算法——K-Means++算法
一、K-Means算法存在的问题
由于K-Means算法的简单且易于实现,因此K-Means算法得到了很多的应用,但是从K-Means算法的过程中发现,K-Means算法中的聚类中心的个数k需要事先指定,这一点对于一些未知数据存在很大的局限性。其次,在利用K-Means算法进行聚类之前,需要初始化k个聚类中心,在上述的K-Means算法的过程中,使用的是在数据集中随机选择最大值和最小值之间的数作为其初始的聚类中心,但是聚类中心选择不好,对于K-Means算法有很大的影响。对于如下的数据集:
如选取的个聚类中心为:
最终的聚类结果为:
为了解决因为初始化的问题带来K-Means算法的问题,改进的K-Means算法,即K-Means++算法被提出,K-Means++算法主要是为了能够在聚类中心的选择过程中选择较优的聚类中心。
二、K-Means++算法的思路
K-Means++算法在聚类中心的初始化过程中的基本原则是使得初始的聚类中心之间的相互距离尽可能远,这样可以避免出现上述的问题。K-Means++算法的初始化过程如下所示:
在数据集中随机选择一个样本点作为第一个初始化的聚类中心
选择出其余的聚类中心:
计算样本中的每一个样本点与已经初始化的聚类中心之间的距离,并选择其中最短的距离,记为d_i
以概率选择距离最大的样本作为新的聚类中心,重复上述过程,直到k个聚类中心都被确定
对k个初始化的聚类中心,利用K-Means算法计算最终的聚类中心。
在上述的K-Means++算法中可知K-Means++算法与K-Means算法最本质的区别是在k个聚类中心的初始化过程。
Python实现:
一、K-Means算法存在的问题
由于K-Means算法的简单且易于实现,因此K-Means算法得到了很多的应用,但是从K-Means算法的过程中发现,K-Means算法中的聚类中心的个数k需要事先指定,这一点对于一些未知数据存在很大的局限性。其次,在利用K-Means算法进行聚类之前,需要初始化k个聚类中心,在上述的K-Means算法的过程中,使用的是在数据集中随机选择最大值和最小值之间的数作为其初始的聚类中心,但是聚类中心选择不好,对于K-Means算法有很大的影响。对于如下的数据集:
如选取的个聚类中心为:
最终的聚类结果为:
为了解决因为初始化的问题带来K-Means算法的问题,改进的K-Means算法,即K-Means++算法被提出,K-Means++算法主要是为了能够在聚类中心的选择过程中选择较优的聚类中心。
二、K-Means++算法的思路
K-Means++算法在聚类中心的初始化过程中的基本原则是使得初始的聚类中心之间的相互距离尽可能远,这样可以避免出现上述的问题。K-Means++算法的初始化过程如下所示:
在数据集中随机选择一个样本点作为第一个初始化的聚类中心
选择出其余的聚类中心:
计算样本中的每一个样本点与已经初始化的聚类中心之间的距离,并选择其中最短的距离,记为d_i
以概率选择距离最大的样本作为新的聚类中心,重复上述过程,直到k个聚类中心都被确定
对k个初始化的聚类中心,利用K-Means算法计算最终的聚类中心。
在上述的K-Means++算法中可知K-Means++算法与K-Means算法最本质的区别是在k个聚类中心的初始化过程。
Python实现:
# coding:UTF-8
'''
Date:20160923
@author: zhaozhiyong
'''
import numpy as np
from random import random
from KMeans import load_data, kmeans, distance, save_result
FLOAT_MAX = 1e100 # 设置一个较大的值作为初始化的最小的距离
def nearest(point, cluster_centers):
min_dist = FLOAT_MAX
m = np.shape(cluster_centers)[0] # 当前已经初始化的聚类中心的个数
for i in xrange(m):
# 计算point与每个聚类中心之间的距离
d = distance(point, cluster_centers[i, ])
# 选择最短距离
if min_dist > d:
min_dist = d
return min_dist
def get_centroids(points, k):
m, n = np.shape(points)
cluster_centers = np.mat(np.zeros((k , n)))
# 1、随机选择一个样本点为第一个聚类中心
index = np.random.randint(0, m)
cluster_centers[0, ] = np.copy(points[index, ])
# 2、初始化一个距离的序列
d = [0.0 for _ in xrange(m)]
for i in xrange(1, k):
sum_all = 0
for j in xrange(m):
# 3、对每一个样本找到最近的聚类中心点
d[j] = nearest(points[j, ], cluster_centers[0:i, ])
# 4、将所有的最短距离相加
sum_all += d[j]
# 5、取得sum_all之间的随机值
sum_all *= random()
# 6、获得距离最远的样本点作为聚类中心点
for j, di in enumerate(d):
sum_all -= di
if sum_all > 0:
continue
cluster_centers[i] = np.copy(points[j, ])
break
return cluster_centers
if __name__ == "__main__":
k = 4#聚类中心的个数
file_path = "data.txt"
# 1、导入数据
print "---------- 1.load data ------------"
data = load_data(file_path)
# 2、KMeans++的聚类中心初始化方法
print "---------- 2.K-Means++ generate centers ------------"
centroids = get_centroids(data, k)
# 3、聚类计算
print "---------- 3.kmeans ------------"
subCenter = kmeans(data, k, centroids)
# 4、保存所属的类别文件
print "---------- 4.save subCenter ------------"
save_result("sub_pp", subCenter)
# 5、保存聚类中心
print "---------- 5.save centroids ------------"
save_result("center_pp", centroids)
其中,KMeans所在的文件为:
# coding:UTF-8
'''
Date:20160923
@author: zhaozhiyong
'''
import numpy as np
def load_data(file_path):
f = open(file_path)
data = []
for line in f.readlines():
row = [] # 记录每一行
lines = line.strip().split("\t")
for x in lines:
row.append(float(x)) # 将文本中的特征转换成浮点数
data.append(row)
f.close()
return np.mat(data)
def distance(vecA, vecB):
dist = (vecA - vecB) * (vecA - vecB).T
return dist[0, 0]
def randCent(data, k):
n = np.shape(data)[1] # 属性的个数
centroids = np.mat(np.zeros((k, n))) # 初始化k个聚类中心
for j in xrange(n): # 初始化聚类中心每一维的坐标
minJ = np.min(data[:, j])
rangeJ = np.max(data[:, j]) - minJ
# 在最大值和最小值之间随机初始化
centroids[:, j] = minJ * np.mat(np.ones((k , 1))) + np.random.rand(k, 1) * rangeJ
return centroids
def kmeans(data, k, centroids):
m, n = np.shape(data) # m:样本的个数,n:特征的维度
subCenter = np.mat(np.zeros((m, 2))) # 初始化每一个样本所属的类别
change = True # 判断是否需要重新计算聚类中心
while change == True:
change = False # 重置
for i in xrange(m):
minDist = np.inf # 设置样本与聚类中心之间的最小的距离,初始值为争取穷
minIndex = 0 # 所属的类别
for j in xrange(k):
# 计算i和每个聚类中心之间的距离
dist = distance(data[i, ], centroids[j, ])
if dist < minDist:
minDist = dist
minIndex = j
# 判断是否需要改变
if subCenter[i, 0] <> minIndex: # 需要改变
change = True
subCenter[i, ] = np.mat([minIndex, minDist])
# 重新计算聚类中心
for j in xrange(k):
sum_all = np.mat(np.zeros((1, n)))
r = 0 # 每个类别中的样本的个数
for i in xrange(m):
if subCenter[i, 0] == j: # 计算第j个类别
sum_all += data[i, ]
r += 1
for z in xrange(n):
try:
centroids[j, z] = sum_all[0, z] / r
except:
print " r is zero"
return subCenter
def save_result(file_name, source):
m, n = np.shape(source)
f = open(file_name, "w")
for i in xrange(m):
tmp = []
for j in xrange(n):
tmp.append(str(source[i, j]))
f.write("\t".join(tmp) + "\n")
f.close()
最终的结果为:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29