policy机制中经典的python用法
由于接触python时间还不长,属于边用边学,在看项目代码的时候,遇到了很多不太懂的python语法,但是我认为这些用法用的实在是好,希望以后自己在写程序时,也能写出这么经典的代码,在这里记录下来这些:
1. 将函数名作为参数传递给另一个模块中的函数使用:
[python] view plaincopy
def init():
......
#read_cached_file做的事是读取_POLICY_PATH文件中的数据,和这个文件修改的时间,保存到_POLICY_CACHE字典中,
#然后使用_set_rules(data)来解析这些数据,最后返回这些数据。
utils.read_cached_file(_POLICY_PATH, _POLICY_CACHE,
reload_func=_set_rules)
def _set_rules(data):
default_rule = CONF.policy_default_rule
policy.set_rules(policy.Rules.load_json(data, default_rule))
2. 类方法的使用
[python] view plaincopy
class Rules(dict):
@classmethod
def load_json(cls, data, default_rule=None):
rules = dict((k, parse_rule(v)) for k, v in
jsonutils.loads(data).items())
return cls(rules, default_rule)
以前一直弄不清楚类方法和静态方法的区别,都是通过类名去调用,但是现在清楚了,类方法有一个很好的特性,就是它可以在创建类对象之前,做一些初始化的工作,这样创建的对象,比直接调用Rules(),更灵活。
这里还想说一下继承自dict这个特性,通过覆盖父类中的方法,__missing__(),__str__()等定制了一个自己的字典类型,用起来很舒服啊。
3. 解释器的使用
[python] view plaincopy
_checks = {}
def register(name, func=None):
def decorator(func):
_checks[name] = func
return func
if func:
return decorator(func)
return decorator
@register("rule")
class RuleCheck(Check):
pass
@register("role")
class RoleCheck(Check):
pass
文档在加载的时候,每遇到一个@register()修饰符,就会将被修饰的类添加到_check变量中,简洁方便。
4. yield的使用
yield在我看来,是一种能够间断的循环,一直都不太会用它,policy中在解析复合rule时,就用到了yield:
[python] view plaincopy
state = ParseState()
for tok, value in _parse_tokenize(rule):
state.shift(tok, value)
# 这个函数主要是将规则的字符串进行了一下预处理,然后调用_parse_check()最终将字符串转换成BaseCheck对象
def _parse_tokenize(rule):
#这段代码的意思是将一个字符串以空格为间隔,重组为一个字符串的列表,如:
# a.split('(is_admin:True or project_id:%(project_id)s)')
# ['(is_admin:True', 'or', 'project_id:%(project_id)s)']
for tok in _tokenize_re.split(rule):
# Skip empty tokens
if not tok or tok.isspace():
continue
# Handle leading parens on the token
clean = tok.lstrip('(')
for i in range(len(tok) - len(clean)):
yield '(', '('
# If it was only parentheses, continue
if not clean:
continue
else:
tok = clean
# Handle trailing parens on the token
clean = tok.rstrip(')')
trail = len(tok) - len(clean)
# Yield the cleaned token
lowered = clean.lower()
if lowered in ('and', 'or', 'not'):
# Special tokens
yield lowered, clean
elif clean:
# Not a special token, but not composed solely of ')'
if len(tok) >= 2 and ((tok[0], tok[-1]) in
[('"''"', '"'), ("'""'", "'")]):
# It's a quoted string
yield 'string', tok[1:-1]
else:
yield 'check', _parse_check(clean)
# Yield the trailing parens
for i in range(trail):
yield ')', ')'
程序中每遇到一个yield,就会中断当前的执行,返回值,然后由外部的for循环进行处理,处理完之后,再回到刚才中断的地方继续执行。
5. 元类的使用
元类以前从来没有接触过,policy里也用到了,还是在解析复合rule的时候,用的这个元类:ParseStateMeta,通过使用元类,可以自定义某些类是如何创建的,从根本上说赋予你如何创建类的控制权:
[python] view plaincopy
class ParseStateMeta(type):
# name是子类的类名,bases是子类的数据,cls_dict是子类中的属性
def __new__(cls, name, bases, cls_dict):
reducers = []
# key为属性名,value为属性的对象,如:
# shift : <function shift at 0xa27b4fc>
# _make_not_expr : <function _make_not_expr at 0xa27b6bc>
for key, value in cls_dict.items():
if not hasattr(value, 'reducers'):# 如果没有包含reducers属性,即那些没有@reducer修饰的方法
continue
for reduction in value.reducers:# 遍历某个函数中的reducers列表,把它添加到元类中的reducers列表中
reducers.append((reduction, key))
cls_dict['reducers'] = reducers
return super(ParseStateMeta, cls).__new__(cls, name, bases, cls_dict)
# 虽然只是简单的定义了一个ParseState对象,但是却做了很多的事:
# 1.@reducer修饰器给被装饰的的方法添加了reducers列表,并且将修饰器的参数建成一个列表添加到该列表中;
# -->形式如:[['','',''],['','','']],
# 再如:[['(', 'or_expr', ')'], ['(', 'and_expr', ')'], ['(', 'check', ')']]
# 2.ParseStateMeta元类创建了一个reducers变量(针对于ParseState是全局的),也是一个列表,
# 然后遍历了ParseState的所有属性,找到有reducers属性的属性(即带有@reducer的方法),
# 然后再遍历该方法的reducers列表,将列表的每一项和该方法的名字组合成一个元组,存放在reducers变量中;
# -->形式如:[(['','',''],funcname),(['','',''],funcname),(['','',''],funcname)]
# 再如:[(['check', 'or', 'check'], '_make_or_expr'), (['or_expr', 'or', 'check'], '_extend_or_expr')]
class ParseState(object):
__metaclass__ = ParseStateMeta
......
6. 递归的使用
[python] view plaincopy
def reduce(self):
#a[-3:]表示a这个列表的最后三个数
for reduction, methname in self.reducers:
# 如果当前的tokens的长度大于reduction的长度,并且tokens的最后几个和reduction相同
# 即模式匹配,则调用相应的方法来进行复合判断
# 什么情况不执行这段呢?
# 1. 没有复合的规则
# 2. 复合的规则和reduction不匹配
# 这两种情况下,就不执行复合,直接返回的还是原来的对象:RuleCheck, RoleCheck, HttpCheck, GenericCheck
# 如果复合的话,返回的是复合对象:OrCheck, AndCheck, NotCheck
if (len(self.tokens) >= len(reduction) and
self.tokens[-len(reduction):] == reduction):
# Get the reduction method
meth = getattr(self, methname)
# Reduce the token stream
# 有两个GenericCheck对象和一个‘or’,传递给_make_or_expr()方法,用这两个
# 对象构造了一个OrCheck对象,该对象的返回值,是按照这两个GenericCheck对象在的
# target和creds上能否执行的真假来进行或操作得到的
results = meth(*self.values[-len(reduction):])
# Update the tokens and values
self.tokens[-len(reduction):] = [r[0] for r in results]
self.values[-len(reduction):] = [r[1] for r in results]
# Check for any more reductions
return self.reduce()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27