
R语言实用小技巧
这篇文章介绍的是我平时写程序遇到的各种小问题,以及解决他们的小技巧
1.R语言读取EXCEL
用R语言读取EXCEL时,可以使用readxl包的read_excel函数,不要使用xlsx这个包,因为xlsx它要加载JAVA,很麻烦,而使用readxl不需要加载JAVA。
2.如何在R中构造一个hash函数
这在R中或许有许多包能够实现,但是,其实我们自己来实现也是很简单的,要知道environment的原理也是一个hash函数,我们只需要利用environment,来负责存储我们所需要的映射列表就可以了。接下来我们可以利用digest包的散列函数digest(),这个函数可以将任意的R对象映射为一个md5值,或者sha1等,他的md5值就是我们所需要的key,以下是使用例子:
有如下这样的数据
> df<-data.frame(x=1:4,y=2:5,z=3:6,k=4:7)
> df
x y z k
1 1 2 3 4
2 2 3 4 5
3 3 4 5 6
4 4 5 6 7
假设我想将x,y映射到z,将y,z映射为k,先定义两个函数,一个是SetKeyValue,负责设置key,value对,第二个是GetValue,输入一个key,返回key对应的value。
library(digest)
SetKeyValue<-function(envir,key,value){
envir[[digest(key)]]<-value
return(envir)
}
GetValue<-function(envir,key){
return(envir[[digest(key)]])
}
hash<-new.env()
for(i in 1:nrow(df)){
hash<-SetKeyValue(hash,df[i,1:2],df[i,3])
hash<-SetKeyValue(hash,df[i,2:3],df[i,4])
}
这样我们就得到了一个由environment构造的hash函数了,我们可以这样去得到值:
> GetValue(hash,df[1,1:2]) #得到当x=1 y=2时的z值
[1] 3
当然,如果想要更快的速度,可以使用fastdigest这个包,里面的散列函数比digest包要快,只需将digest()替换成fastdigest()就可以了。
3.如何用最快最简单的方法加快R的执行速度?
答案是使用compiler包,这个包的作用就是将R代码编译成字节码,这在很多情况下都能加快运行的速度,当然也会有一些时候作用没有那么大,使用非常简单,以下是一个使用例子:
> library(microbenchmark)
> library(compiler)
> f1<-function(){
+ x=1:100
+ for(i in 1:100){
+ x[i]=x[i]+1
+ }
+ }
> f2<-function(){
+ x=1:100
+ x+1
+ }
> f3<-cmpfun(f1)
> f4<-cmpfun(f2)
> microbenchmark(
+ f1(),
+ f2(),
+ f3(),
+ f4()
+ )
Unit: nanoseconds
expr min lq mean median uq max neval cld
f1() 170077 175453 178277.64 177652 179363 227746 100 c
f2() 978 1467 2028.94 1956 2444 5865 100 a
f3() 11730 12219 12873.79 12708 13196 20039 100 b
f4() 978 1466 1564.65 1467 1955 2933 100 a
可以看到编译后的f3,f4跟编译前的f1,f2,快了将近2倍到10倍,这么简单就能提升运行速度,何乐而不为呢?
我写的一个小代码,可以批量地把环境变量中所有的函数都编译一次:
funlist<-c(lsf.str())
for(f in funlist){
assign(f,cmpfun(get(f)))
}
如何想要更快,可以参考Windows使用OpenBLAS加速R语言计算速度
4.如何读取一个文件夹所有的文件?
我们可以利用list.files进行匹配,通过其中参数pattern可以填写正则表达式,用来匹配文件夹下满足条件的文件名。然后再利用lapply来导入文件。
filenames <- list.files("C:/Users/qj/Desktop/demo_data/", pattern = ".txt")
datalist <- lapply(filenames, function(name) {
read.table(paste0("C:/Users/qj/Desktop/demo_data/", name),sep=',',header = T)
})
5.如何把data.frame按照行来对应生成列表
> set.seed(1)
> df <- data.frame(i=3:1, y = runif(3))
> df
i y
1 3 0.2655087
2 2 0.3721239
3 1 0.5728534
我想把这个data.frame变成一个list 并且i要与list中的序号对应。
解决方法如下:
> i=df$i
> df=df[,2]
> dflist<-split(df,i)
> names(dflist)<-NULL
> dflist
[[1]]
[1] 0.5728534
[[2]]
[1] 0.3721239
[[3]]
[1] 0.2655087
6.如何标记每个组别中出现的次数,他们出现的顺序。
有这么个数据:
> df=data.frame(group=c(1,1,2,2,3,3,3))
> df
group
1 1
2 1
3 2
4 2
5 3
6 3
7 3
现在想添加一列,标记的id列,让它变成:
group id
1: 1 1
2: 1 2
3: 2 1
4: 2 2
5: 3 1
6: 3 2
7: 3 3
可以利用data.table实现:
> dt<-data.table(df)
> dt[,id:=1:.N,by=group]
> dt
group id
1: 1 1
2: 1 2
3: 2 1
4: 2 2
5: 3 1
6: 3 2
7: 3 3
7.R语言读取SPSS格式文件
可以使用library(memisc)这个包,虽然foreign也能做到,但是有的时候格式会很混乱,而memisc就可以完美读取。
8.R语言for循环的小贴士
看一个例子,这个例子是一个简单的for循环,它在大部分情况下是没有任何问题的。
n=nrow(x)
for(i in 1:n){
x[i]
}
但是如果当x是一个空值时,这就会出问题了,当x是空值时,我们并不希望这个for循环会执行,但是在这里n=0,那么i in 1:0 就会产生1和0,这就会导致出现各种各样的错误,而且这些错误并不固定,它会随着你的for循环里面的内容改变而改变,从而很难定位bug的所在。一个解决的方法是,我们可以使用seq.int(length.out = n)循环来代替1:n
n=nrow(x)
for(i in seq.int(length.out = n)){
x[i]
}
这样当n=0的时候,这个循环就不会执行了。
9.使用foreach包并行计算时看到里面print的方法
在linux的时候,我们可以在makeCluster上加上outfile="" 使用""就会默认输出到控制台,不过这个功能在windows好像不能用,在windows的时候建议输出到文件里,outfile="d:/log.txt",这样就可以了。
library(parallel)
library(foreach)
library(doParallel)
cl<-makeCluster(2,outfile="d:/log.txt") #work for windows
cl<-makeCluster(2,outfile="") #work for linux
registerDoParallel(cl)
x <- foreach(i=1:100,.combine = rbind,.inorder = F) %dopar% {
print(i)
sqrt(i)
}
stopCluster(cl)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09