R做线性回归及检验
使用R对内置鸢尾花数据集iris(在R提示符下输入iris回车可看到内容)进行回归分析,自行选择因变量和自变量,注意Species这个分类变量的处理方法
## 将iris数据加载进来
attach(iris)
## 查看iris数据的整体情况
str(iris)
## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
可以看出,共有150个样本,5个变量,前四个是数值型,第五个变量是因子型。
## 查看数据散点分布情况
pairs(iris[, 1:4], col = "blue")
从上图可以看出,Sepal.Length与Petal.Length、Petal.Length与Petal.Width存在明显的正相关性。接下来选择这两对变量分别建立回归模型。
(lm1 <- lm(Sepal.Length ~ Petal.Length))
##
## Call:
## lm(formula = Sepal.Length ~ Petal.Length)
##
## Coefficients:
## (Intercept) Petal.Length
## 4.307 0.409
(lm2 <- lm(Petal.Length ~ Petal.Width))
##
## Call:
## lm(formula = Petal.Length ~ Petal.Width)
##
## Coefficients:
## (Intercept) Petal.Width
## 1.08 2.23
summary(lm1)
##
## Call:
## lm(formula = Sepal.Length ~ Petal.Length)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.2468 -0.2966 -0.0152 0.2768 1.0027
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.3066 0.0784 54.9 <2e-16 ***
## Petal.Length 0.4089 0.0189 21.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.407 on 148 degrees of freedom
## Multiple R-squared: 0.76, Adjusted R-squared: 0.758
## F-statistic: 469 on 1 and 148 DF, p-value: <2e-16
summary(lm2)
##
## Call:
## lm(formula = Petal.Length ~ Petal.Width)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3354 -0.3035 -0.0295 0.2578 1.3945
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0836 0.0730 14.8 <2e-16 ***
## Petal.Width 2.2299 0.0514 43.4 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.478 on 148 degrees of freedom
## Multiple R-squared: 0.927, Adjusted R-squared: 0.927
## F-statistic: 1.88e+03 on 1 and 148 DF, p-value: <2e-16
两个模型的拟合效果都不错,但从R平方和角度考虑,lm2的模型效果好点。
##对建立的模型分别进行残差检验
par(mfrow = c(2, 2))
plot(lm1)
par(mfrow = c(1, 2))
plot(Petal.Length, Sepal.Length)
lines(Petal.Length, lm1$fitted.values)
plot(Petal.Width, Petal.Length)
lines(Petal.Width, lm2$fitted.values)
数据中的第五个变量Species是因子型变量,在进行回归建模前,需要对其进行哑变量处理,提高模型精确度。在R建立回归模型时,会主动对因子型变量进行哑变量处理,下面先利用Sepal.Width、Species对Sepal.Length建立回归模型,看看效果。
lm3 <- lm(Sepal.Length ~ Sepal.Width + Species)
summary(lm3)
##
## Call:
## lm(formula = Sepal.Length ~ Sepal.Width + Species)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3071 -0.2571 -0.0533 0.1954 1.4125
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.251 0.370 6.09 9.6e-09 ***
## Sepal.Width 0.804 0.106 7.56 4.2e-12 ***
## Speciesversicolor 1.459 0.112 13.01 < 2e-16 ***
## Speciesvirginica 1.947 0.100 19.47 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.438 on 146 degrees of freedom
## Multiple R-squared: 0.726, Adjusted R-squared: 0.72
## F-statistic: 129 on 3 and 146 DF, p-value: <2e-16
par(mfrow = c(2, 2))
plot(lm3)
从建立的模型的各系数的p值看出,各参量均是显著的。R平方和也有0.726,处于一个相对合理的水平。故该模型是可以接受的。
2 使用R对内置longley数据集进行回归分析,如果以GNP.deflator作为因变量y,问这个数据集是否存在多重共线性问题?应该选择哪些变量参与回归?
答:
## 查看longley的数据结构
str(longley)
## 'data.frame': 16 obs. of 7 variables:
## $ GNP.deflator: num 83 88.5 88.2 89.5 96.2 ...
## $ GNP : num 234 259 258 285 329 ...
## $ Unemployed : num 236 232 368 335 210 ...
## $ Armed.Forces: num 159 146 162 165 310 ...
## $ Population : num 108 109 110 111 112 ...
## $ Year : int 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 ...
## $ Employed : num 60.3 61.1 60.2 61.2 63.2 ...
longly数据集中有7个变量16个观测值,7个变量均属于数值型。
首先建立全量回归模型
lm1 <- lm(GNP.deflator ~ ., data = longley)
summary(lm1)
##
## Call:
## lm(formula = GNP.deflator ~ ., data = longley)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.009 -0.515 0.113 0.423 1.550
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2946.8564 5647.9766 0.52 0.614
## GNP 0.2635 0.1082 2.44 0.038 *
## Unemployed 0.0365 0.0302 1.21 0.258
## Armed.Forces 0.0112 0.0155 0.72 0.488
## Population -1.7370 0.6738 -2.58 0.030 *
## Year -1.4188 2.9446 -0.48 0.641
## Employed 0.2313 1.3039 0.18 0.863
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.19 on 9 degrees of freedom
## Multiple R-squared: 0.993, Adjusted R-squared: 0.988
## F-statistic: 203 on 6 and 9 DF, p-value: 4.43e-09
建立的模型结果是令人沮丧的,6个变量的显著性p值只有两个有一颗星,说明有些变量不适合用于建模。
看各自变量是否存在共线性问题。此处利用方差膨胀因子进行判断:方差膨胀因子VIF是指回归系数的估计量由于自变量共线性使得方差增加的一个相对度量。一般建议,如VIF>10,表明模型中有很强的共线性问题。
library(car)
vif(lm1, digits = 3)
## GNP Unemployed Armed.Forces Population Year
## 1214.57 83.96 12.16 230.91 2065.73
## Employed
## 220.42
从结果看,所有自变量的vif值均超过了10,其中GNP、Year更是高达四位数,存在严重的多种共线性。接下来,利用cor()函数查看各自变量间的相关系数。
plot(longley[, 2:7])
cor(longley[, 2:7])
## GNP Unemployed Armed.Forces Population Year Employed
## GNP 1.0000 0.6043 0.4464 0.9911 0.9953 0.9836
## Unemployed 0.6043 1.0000 -0.1774 0.6866 0.6683 0.5025
## Armed.Forces 0.4464 -0.1774 1.0000 0.3644 0.4172 0.4573
## Population 0.9911 0.6866 0.3644 1.0000 0.9940 0.9604
## Year 0.9953 0.6683 0.4172 0.9940 1.0000 0.9713
## Employed 0.9836 0.5025 0.4573 0.9604 0.9713 1.0000
从散点分布图和相关系数,均可以得知,自变量间存在严重共线性。
接下来利用step()函数进行变量的初步筛选。
lm1.step <- step(lm1, direction = "backward")
## Start: AIC=10.48
## GNP.deflator ~ GNP + Unemployed + Armed.Forces + Population +
## Year + Employed
##
## Df Sum of Sq RSS AIC
## - Employed 1 0.04 12.9 8.54
## - Year 1 0.33 13.2 8.89
## - Armed.Forces 1 0.74 13.6 9.39
## 12.8 10.48
## - Unemployed 1 2.08 14.9 10.88
## - GNP 1 8.47 21.3 16.59
## - Population 1 9.48 22.3 17.33
##
## Step: AIC=8.54
## GNP.deflator ~ GNP + Unemployed + Armed.Forces + Population +
## Year
##
## Df Sum of Sq RSS AIC
## - Year 1 0.46 13.3 7.11
## 12.9 8.54
## - Armed.Forces 1 1.79 14.7 8.62
## - Unemployed 1 5.74 18.6 12.43
## - GNP 1 9.40 22.3 15.30
## - Population 1 9.90 22.8 15.66
##
## Step: AIC=7.11
## GNP.deflator ~ GNP + Unemployed + Armed.Forces + Population
##
## Df Sum of Sq RSS AIC
## - Armed.Forces 1 1.3 14.7 6.62
## 13.4 7.11
## - Population 1 9.7 23.0 13.82
## - Unemployed 1 14.5 27.8 16.86
## - GNP 1 35.2 48.6 25.76
##
## Step: AIC=6.62
## GNP.deflator ~ GNP + Unemployed + Population
##
## Df Sum of Sq RSS AIC
## 14.7 6.62
## - Unemployed 1 13.3 28.0 14.95
## - Population 1 13.3 28.0 14.95
## - GNP 1 48.6 63.2 27.99
根据AIC 赤池信息准则,模型最后选择Unemployed、Population、GNP三个因变量参与建模。
查看进行逐步回归后的模型效果
summary(lm1.step)
##
## Call:
## lm(formula = GNP.deflator ~ GNP + Unemployed + Population, data = longley)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.047 -0.682 0.196 0.696 1.435
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 221.12959 48.97251 4.52 0.00071 ***
## GNP 0.22010 0.03493 6.30 3.9e-05 ***
## Unemployed 0.02246 0.00681 3.30 0.00634 **
## Population -1.80501 0.54692 -3.30 0.00634 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.11 on 12 degrees of freedom
## Multiple R-squared: 0.992, Adjusted R-squared: 0.989
## F-statistic: 472 on 3 and 12 DF, p-value: 1.03e-12
从各判定指标可以看出,模型的结果是可喜的。参与建模的三个变量和截距均是显著的。R平方和也高达0.992。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21