用R检验配对股票的协整性
基于统计套利的配对交易策略是一种市场中性策略。具体地说,是指从市场上找出历史股价走势相近的股票进行配对,当配对股票价格差(Spread)偏离历史均值时,则做空股价偏高的股票,同时做多股价偏低的股票,等待它们回归到长期均衡关系,由此赚取两股票价格收敛的报酬。
进行配对交易,第一步也是最关键的一步是寻找符合配对条件的股票,即两支历史价格走势相近,具有长期稳定关系的股票。本文解释如何用R来实现协整检验。
假设你有两支股票,如TKR_Y和TKR_X,各自5分钟行情的历史数据,你想要知道它们是否存在协整关系;再假设这些数据是从PostgreSQL数据库(pairs_trading_test)中提取,数据表(tbl_quote)的结构为:
id #id
market #市场,如SH,SZ
symbol #代码,如600036
qdatetime #时间戳,YYYY-MM-DD HH:MM:SS
open #开盘价
high #最高价
low #最低价
close #收盘价
adj_close #调整后收盘价,指除权息后经调整的收盘价
数据表示
在R中,当然可以用向量(vector)或数据框(data frame)来表示你的时间序列数据,但其过程肯定乏味低效。强烈建议使用zoo包或xts包来进行时间序列分析,xts是zoo包的一个超集,包含极高的运算效率和其它一些方便实用的特点。此处,我们用zoo对象来表达时间序列数据。
一旦把数据加载到zoo对象,比如t,那么它的行为与数据框类似。一个zoo对象可以包含若干列,每一列是一个时间序列,每一行则是这些时间序列在同一时刻的观测值。对象也提供了另外一些附加属性,如:index(t)是一个日期向量,每次观察一个日期;第一个和最后一个日期可以分别用start(t)和end(t)获得。
加载数据
从数据库中读取并加载数据只需完成以下简单步骤:
library(zoo)
library(RpgSQL)
r_conn<-dbConnect(pgSQL(), user="postgres", password="postgres",
dbname="pairs_trading_test", host="localhost")
q<-paste("select qdatetime, log(close) from tbl_quote where market like '", X_market, "' and symbol like '", X_symbol, "'", sep="")
quote_x <- dbGetQuery(r_conn, q)
q<-paste("select qdatetime, log(close) from tbl_quote where market like '", Y_market, "' and symbol like '", Y_symbol, "'", sep="")
quote_y <- dbGetQuery(r_conn, q)
#用zoo函数来构造zoo对象,该函数有两个参数,一个数据向量,一个日期向量
quote_x <- zoo(quote_x$close, quote_x$qdatetime)
quote_y <- zoo(quote_y$close, quote_y$qdatetime)
# merge函数合并两个zoo对象,同时计算它们的交集(all=FALSE)或并集(all=TRUE)
t.zoo <- merge(quote_x, quote_y, all=FALSE)
#此时,t.zoo是一个包含两列:quote_x和quote_y的zoo对象。由于R中许多统计函数需要数据框作为输入项。在此,我们创建一个数据框对象
t <- as.data.frame(t.zoo)
#打印输出日期范围
cat("日期范围是:", format(start(t.zoo)), "至", format(end(t.zoo)), "\n")
#----------------------------------------------------------------------------------------------------------------
# X_market, X_symbol, Y_market, Y_symbol分别为股票TKR_X、TKR_Y的市场和代码
# log(close)表示取收盘价自然对数。取价格的对数序列是协整检验的常用做法,目的是消除数据中可能存在的异方差。
#----------------------------------------------------------------------------------------------------------------
构造价差序列
在Matlab、Eviews等软件中,一般是先检验协整关系,然后再构造价差序列。在R中,我们可以以另外一种方式完成同样的任务:先构造价差序列,然后对该序列进行单位根检验。如果价差序列有一个根位于单位圆内,则相应的股票就是协整的。
价差序列定义如下:
S = y - (β × x)
此处,β是对冲系数,用最小二乘法计算而得。移项,我们要知道的不过就是最适合以下方程的β:
y =(-β)× x
这是一个简单且没有y截距的线性方程。在R中,lm函数可以用来拟合这样的线性模型。
# lm函数用OLS构造线性回归模型。我们先构造一个截距为零的线性模型,然后提取模型的第2个回归系数。
m <- lm(quote_y ~ quote_x + 0, data = t)
beta <- coef(m)[1]
#现在,计算价差序列
sprd <- t$quote_y - beta * t$quote_x
传递给lm的第一个参数是一个指定线性模型的公式,公式quote_y ~ quote_x + 0表示模型如下:
quote_yi= β × quote_xi+ εi
(如果公式中省略掉"+ 0", 则R也会拟合一个y截距)
检验协整关系
ADF是单位根检验的一种基本方法,许多R包都提供该方法。这里,我们用tseries包中的adf.test函数。该函数返回一个包含测试结果,尤其是我们所需的P值,的对象。
library(tseries)
ht <- adf.test(sprd, alternative="stationary", k=0)
设置alternative="stationary"非常重要:
对统计学者而言,它指定了一个价差序列非平稳或发散的零假设
对其他人而言,它意味着如果P值很小,则价差是均值回复的。至于何为“小”,取决与你有多严格,一般是小于0.1或0.05(越小越好)
至此,协整检验就Ok了。我们可以将ADF检验结果解释如下:
#ht对象中包含ADF检验中得到的P值。p值是价差序列非均值回复的概率,因此,越小的P值意味序列非均值回复的概率越小。
if (ht$p.value < 0.05) {
cat("价差可能均值回复.\n")
} else {
cat("价差不满足均值回复.\n")
}
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31