
用R检验配对股票的协整性
基于统计套利的配对交易策略是一种市场中性策略。具体地说,是指从市场上找出历史股价走势相近的股票进行配对,当配对股票价格差(Spread)偏离历史均值时,则做空股价偏高的股票,同时做多股价偏低的股票,等待它们回归到长期均衡关系,由此赚取两股票价格收敛的报酬。
进行配对交易,第一步也是最关键的一步是寻找符合配对条件的股票,即两支历史价格走势相近,具有长期稳定关系的股票。本文解释如何用R来实现协整检验。
假设你有两支股票,如TKR_Y和TKR_X,各自5分钟行情的历史数据,你想要知道它们是否存在协整关系;再假设这些数据是从PostgreSQL数据库(pairs_trading_test)中提取,数据表(tbl_quote)的结构为:
id #id
market #市场,如SH,SZ
symbol #代码,如600036
qdatetime #时间戳,YYYY-MM-DD HH:MM:SS
open #开盘价
high #最高价
low #最低价
close #收盘价
adj_close #调整后收盘价,指除权息后经调整的收盘价
数据表示
在R中,当然可以用向量(vector)或数据框(data frame)来表示你的时间序列数据,但其过程肯定乏味低效。强烈建议使用zoo包或xts包来进行时间序列分析,xts是zoo包的一个超集,包含极高的运算效率和其它一些方便实用的特点。此处,我们用zoo对象来表达时间序列数据。
一旦把数据加载到zoo对象,比如t,那么它的行为与数据框类似。一个zoo对象可以包含若干列,每一列是一个时间序列,每一行则是这些时间序列在同一时刻的观测值。对象也提供了另外一些附加属性,如:index(t)是一个日期向量,每次观察一个日期;第一个和最后一个日期可以分别用start(t)和end(t)获得。
加载数据
从数据库中读取并加载数据只需完成以下简单步骤:
library(zoo)
library(RpgSQL)
r_conn<-dbConnect(pgSQL(), user="postgres", password="postgres",
dbname="pairs_trading_test", host="localhost")
q<-paste("select qdatetime, log(close) from tbl_quote where market like '", X_market, "' and symbol like '", X_symbol, "'", sep="")
quote_x <- dbGetQuery(r_conn, q)
q<-paste("select qdatetime, log(close) from tbl_quote where market like '", Y_market, "' and symbol like '", Y_symbol, "'", sep="")
quote_y <- dbGetQuery(r_conn, q)
#用zoo函数来构造zoo对象,该函数有两个参数,一个数据向量,一个日期向量
quote_x <- zoo(quote_x$close, quote_x$qdatetime)
quote_y <- zoo(quote_y$close, quote_y$qdatetime)
# merge函数合并两个zoo对象,同时计算它们的交集(all=FALSE)或并集(all=TRUE)
t.zoo <- merge(quote_x, quote_y, all=FALSE)
#此时,t.zoo是一个包含两列:quote_x和quote_y的zoo对象。由于R中许多统计函数需要数据框作为输入项。在此,我们创建一个数据框对象
t <- as.data.frame(t.zoo)
#打印输出日期范围
cat("日期范围是:", format(start(t.zoo)), "至", format(end(t.zoo)), "\n")
#----------------------------------------------------------------------------------------------------------------
# X_market, X_symbol, Y_market, Y_symbol分别为股票TKR_X、TKR_Y的市场和代码
# log(close)表示取收盘价自然对数。取价格的对数序列是协整检验的常用做法,目的是消除数据中可能存在的异方差。
#----------------------------------------------------------------------------------------------------------------
构造价差序列
在Matlab、Eviews等软件中,一般是先检验协整关系,然后再构造价差序列。在R中,我们可以以另外一种方式完成同样的任务:先构造价差序列,然后对该序列进行单位根检验。如果价差序列有一个根位于单位圆内,则相应的股票就是协整的。
价差序列定义如下:
S = y - (β × x)
此处,β是对冲系数,用最小二乘法计算而得。移项,我们要知道的不过就是最适合以下方程的β:
y =(-β)× x
这是一个简单且没有y截距的线性方程。在R中,lm函数可以用来拟合这样的线性模型。
# lm函数用OLS构造线性回归模型。我们先构造一个截距为零的线性模型,然后提取模型的第2个回归系数。
m <- lm(quote_y ~ quote_x + 0, data = t)
beta <- coef(m)[1]
#现在,计算价差序列
sprd <- t$quote_y - beta * t$quote_x
传递给lm的第一个参数是一个指定线性模型的公式,公式quote_y ~ quote_x + 0表示模型如下:
quote_yi= β × quote_xi+ εi
(如果公式中省略掉"+ 0", 则R也会拟合一个y截距)
检验协整关系
ADF是单位根检验的一种基本方法,许多R包都提供该方法。这里,我们用tseries包中的adf.test函数。该函数返回一个包含测试结果,尤其是我们所需的P值,的对象。
library(tseries)
ht <- adf.test(sprd, alternative="stationary", k=0)
设置alternative="stationary"非常重要:
对统计学者而言,它指定了一个价差序列非平稳或发散的零假设
对其他人而言,它意味着如果P值很小,则价差是均值回复的。至于何为“小”,取决与你有多严格,一般是小于0.1或0.05(越小越好)
至此,协整检验就Ok了。我们可以将ADF检验结果解释如下:
#ht对象中包含ADF检验中得到的P值。p值是价差序列非均值回复的概率,因此,越小的P值意味序列非均值回复的概率越小。
if (ht$p.value < 0.05) {
cat("价差可能均值回复.\n")
} else {
cat("价差不满足均值回复.\n")
}
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08