
用R检验配对股票的协整性
基于统计套利的配对交易策略是一种市场中性策略。具体地说,是指从市场上找出历史股价走势相近的股票进行配对,当配对股票价格差(Spread)偏离历史均值时,则做空股价偏高的股票,同时做多股价偏低的股票,等待它们回归到长期均衡关系,由此赚取两股票价格收敛的报酬。
进行配对交易,第一步也是最关键的一步是寻找符合配对条件的股票,即两支历史价格走势相近,具有长期稳定关系的股票。本文解释如何用R来实现协整检验。
假设你有两支股票,如TKR_Y和TKR_X,各自5分钟行情的历史数据,你想要知道它们是否存在协整关系;再假设这些数据是从PostgreSQL数据库(pairs_trading_test)中提取,数据表(tbl_quote)的结构为:
id #id
market #市场,如SH,SZ
symbol #代码,如600036
qdatetime #时间戳,YYYY-MM-DD HH:MM:SS
open #开盘价
high #最高价
low #最低价
close #收盘价
adj_close #调整后收盘价,指除权息后经调整的收盘价
数据表示
在R中,当然可以用向量(vector)或数据框(data frame)来表示你的时间序列数据,但其过程肯定乏味低效。强烈建议使用zoo包或xts包来进行时间序列分析,xts是zoo包的一个超集,包含极高的运算效率和其它一些方便实用的特点。此处,我们用zoo对象来表达时间序列数据。
一旦把数据加载到zoo对象,比如t,那么它的行为与数据框类似。一个zoo对象可以包含若干列,每一列是一个时间序列,每一行则是这些时间序列在同一时刻的观测值。对象也提供了另外一些附加属性,如:index(t)是一个日期向量,每次观察一个日期;第一个和最后一个日期可以分别用start(t)和end(t)获得。
加载数据
从数据库中读取并加载数据只需完成以下简单步骤:
library(zoo)
library(RpgSQL)
r_conn<-dbConnect(pgSQL(), user="postgres", password="postgres",
dbname="pairs_trading_test", host="localhost")
q<-paste("select qdatetime, log(close) from tbl_quote where market like '", X_market, "' and symbol like '", X_symbol, "'", sep="")
quote_x <- dbGetQuery(r_conn, q)
q<-paste("select qdatetime, log(close) from tbl_quote where market like '", Y_market, "' and symbol like '", Y_symbol, "'", sep="")
quote_y <- dbGetQuery(r_conn, q)
#用zoo函数来构造zoo对象,该函数有两个参数,一个数据向量,一个日期向量
quote_x <- zoo(quote_x$close, quote_x$qdatetime)
quote_y <- zoo(quote_y$close, quote_y$qdatetime)
# merge函数合并两个zoo对象,同时计算它们的交集(all=FALSE)或并集(all=TRUE)
t.zoo <- merge(quote_x, quote_y, all=FALSE)
#此时,t.zoo是一个包含两列:quote_x和quote_y的zoo对象。由于R中许多统计函数需要数据框作为输入项。在此,我们创建一个数据框对象
t <- as.data.frame(t.zoo)
#打印输出日期范围
cat("日期范围是:", format(start(t.zoo)), "至", format(end(t.zoo)), "\n")
#----------------------------------------------------------------------------------------------------------------
# X_market, X_symbol, Y_market, Y_symbol分别为股票TKR_X、TKR_Y的市场和代码
# log(close)表示取收盘价自然对数。取价格的对数序列是协整检验的常用做法,目的是消除数据中可能存在的异方差。
#----------------------------------------------------------------------------------------------------------------
构造价差序列
在Matlab、Eviews等软件中,一般是先检验协整关系,然后再构造价差序列。在R中,我们可以以另外一种方式完成同样的任务:先构造价差序列,然后对该序列进行单位根检验。如果价差序列有一个根位于单位圆内,则相应的股票就是协整的。
价差序列定义如下:
S = y - (β × x)
此处,β是对冲系数,用最小二乘法计算而得。移项,我们要知道的不过就是最适合以下方程的β:
y =(-β)× x
这是一个简单且没有y截距的线性方程。在R中,lm函数可以用来拟合这样的线性模型。
# lm函数用OLS构造线性回归模型。我们先构造一个截距为零的线性模型,然后提取模型的第2个回归系数。
m <- lm(quote_y ~ quote_x + 0, data = t)
beta <- coef(m)[1]
#现在,计算价差序列
sprd <- t$quote_y - beta * t$quote_x
传递给lm的第一个参数是一个指定线性模型的公式,公式quote_y ~ quote_x + 0表示模型如下:
quote_yi= β × quote_xi+ εi
(如果公式中省略掉"+ 0", 则R也会拟合一个y截距)
检验协整关系
ADF是单位根检验的一种基本方法,许多R包都提供该方法。这里,我们用tseries包中的adf.test函数。该函数返回一个包含测试结果,尤其是我们所需的P值,的对象。
library(tseries)
ht <- adf.test(sprd, alternative="stationary", k=0)
设置alternative="stationary"非常重要:
对统计学者而言,它指定了一个价差序列非平稳或发散的零假设
对其他人而言,它意味着如果P值很小,则价差是均值回复的。至于何为“小”,取决与你有多严格,一般是小于0.1或0.05(越小越好)
至此,协整检验就Ok了。我们可以将ADF检验结果解释如下:
#ht对象中包含ADF检验中得到的P值。p值是价差序列非均值回复的概率,因此,越小的P值意味序列非均值回复的概率越小。
if (ht$p.value < 0.05) {
cat("价差可能均值回复.\n")
} else {
cat("价差不满足均值回复.\n")
}
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26