京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言的数据导入与导出学习笔记
福尔·摩斯曾说过:“数据,数据,没有数据的推理是罪恶!”不过比起有意思的统计分析,数据的导入与导出显得十分的无趣,但是不得不说统计分析的数据导入与导出是个让人沮丧的任务,而且耗时巨大。
今天分享的是R中数据的输出与一些特定格式的数据读入。
一、数据的输出
R中提供了write.table(),cat()等函数来导出数据。不过值得指出的是R语言能够导出的数据格式是有限的,比如在基本包中,我们能够导出数据的格式只有txt,csv。
现在介绍一下两个函数的用法:
write.table(x, file = "", append =FALSE, quote = TRUE, sep = " ",
eol = "\n", na = "NA", dec = ".",row.names = TRUE,
col.names = TRUE, qmethod = c("escape", "double"),
fileEncoding = "")
write.csv(...)
write.csv2(...)
write.csv(),write.csv2()可以看做write.table()的变体,我们知道write.csv(),与参数sep=“,”的write.table()是等效的。下面介绍几个常见参数:
x:数据集
file:文件的路径,包括文件名如:”D:/R/data/data1.csv”
quote:数据在写入文件中时我们常用引号将其隔开,当参数为F时,文件中的数据不再用引号修饰
append:是否追加,如果文件名已存在而没有选择追加,那么文件将会被覆盖。(覆盖时是没有提示的,所以命名需要注意一些。
cat(... , file = "", sep = " ", fill = FALSE, labels = NULL, append = FALSE)
cat()作为一个输出函数与dos命令差不多,也是将数据集或数据写入文件中,常用参数和write.table()类似。
cat()函数用来输出,可以把多个参数连接起来再输出(具有paste()的功能)。例如:
> cat(c("AB", "C"),c("E", "F"), "n", sep="/ ")
AB/ C/ E/ F/ n
还可以指定一个参数file=给一个文件名,可以把结果写到指定的文件中,如: > cat("i = ", 1, "n", file="d:/R/data2.txt")如果指定的文件已经存在则原来内容被覆盖。加上一个append=TRUE参数可以不覆盖原文件而是在文件末尾附加,这很适用于运行中的结果记录。
当然cat()的用法比较丰富,也可以用来查看文件,与format合用控制输出格式等。
二、数据的导入
先介绍R中基本的读取数据函数read.table()的用法:
read.table(file, header = FALSE, sep = "", quote = "\"'", dec = ".", row.names, col.names, as.is = !stringsAsFactors, na.strings = "NA", colClasses = NA, nrows = -1, skip = 0, check.names = TRUE, fill = !blank.lines.skip, strip.white = FALSE, blank.lines.skip = TRUE, comment.char = "#", allowEscapes = FALSE, flush = FALSE, stringsAsFactors = default.stringsAsFactors(), fileEncoding = "", encoding = "unknown", text) read.csv(file, header = TRUE, sep = ",", quote="\"", dec=".", fill = TRUE, comment.char="", ...) read.csv2(file, header = TRUE, sep = ";", quote="\"", dec=",", fill = TRUE, comment.char="", ...) read.delim(file, header = TRUE, sep = "\t", quote="\"", dec=".", fill = TRUE, comment.char="", ...) read.delim2(file, header = TRUE, sep = "\t", quote="\"", dec=",", fill = TRUE, comment.char="", ...)
介绍常用参数:
File:文件路径,可以用绝对路径也可以用相对路径,R的工作目录你可以使用getwd()来查看,用setwd()来改。
Header:读取文件的第一行是否用作变量名
Sep:分隔符,参数为“,“时等价于read.csv()
Scan()函数也是一个读取数据比较好的函数,但是参数较为复杂,我们可以说,read.table()函数是scan函数的设定好部分参数的结果。
Read.delim()这个可以读到剪贴板的东西,用法为read.delim(clipboard)其他参数与read.table相同。
Read.fwf()读取固定长度的数据,也可以利用这个特性截去数据的尾巴或者表格的尾巴。
自带的foreign包可以实现s-plus,sas,spss,stata的数据读入。以读stata数据为例:
>Read.dta(“d:/R/data3.dta”)其他参数与read.table也是一样的。
遗憾的是,基本包与foreign包都没有办法读取excel的数据。但这并不代表我们没办法读取excel的数据。例如我们可以将excel的数据放在剪贴板中,通过read.delim(clipbroad)来读取。也可以将excel表格变成csv格式的再处理。最后指出,R中的gdata包的read.xls函数以及RODBC包中也有相应的处理函数。
本文的最后,运用R语言的帮助文档《R数据的导入与导出》中的一段话作为结束:“In general, statistical systems like R arenot particularly well suited to manipulations of large-scale data. Some othersystems are better than R at this, and part of the thrust of this manual is tosuggest that rather than duplicating functionality in R we can make anothersystem do the work! (For example Therneau & Grambsch (2000) commented thatthey preferred to do data manipulation in SAS and then use packagesurvivalin S for the analysis.)”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24