举例讲解Python中的死锁、可重入锁和互斥锁
一、死锁
简单来说,死锁是一个资源被多次调用,而多次调用方都未能释放该资源就会造成死锁,这里结合例子说明下两种常见的死锁情况。
1、迭代死锁
该情况是一个线程“迭代”请求同一个资源,直接就会造成死锁:
import threading
import time
class MyThread(threading.Thread):
def run(self):
global num
time.sleep(1)
if mutex.acquire(1):
num = num+1
msg = self.name+' set num to '+str(num)
print msg
mutex.acquire()
mutex.release()
mutex.release()
num = 0
mutex = threading.Lock()
def test():
for i in range(5):
t = MyThread()
t.start()
if __name__ == '__main__':
test()
上例中,在run函数的if判断中第一次请求资源,请求后还未 release ,再次acquire,最终无法释放,造成死锁。这里例子中通过将print下面的两行注释掉就可以正常执行了 ,除此之外也可以通过可重入锁解决,后面会提到。
2、互相调用死锁
上例中的死锁是在同一个def函数内多次调用造成的,另一种情况是两个函数中都会调用相同的资源,互相等待对方结束的情况。如果两个线程分别占有一部分资源并且同时等待对方的资源,就会造成死锁。
import threading
import time
class MyThread(threading.Thread):
def do1(self):
global resA, resB
if mutexA.acquire():
msg = self.name+' got resA'
print msg
if mutexB.acquire(1):
msg = self.name+' got resB'
print msg
mutexB.release()
mutexA.release()
def do2(self):
global resA, resB
if mutexB.acquire():
msg = self.name+' got resB'
print msg
if mutexA.acquire(1):
msg = self.name+' got resA'
print msg
mutexA.release()
mutexB.release()
def run(self):
self.do1()
self.do2()
resA = 0
resB = 0
mutexA = threading.Lock()
mutexB = threading.Lock()
def test():
for i in range(5):
t = MyThread()
t.start()
if __name__ == '__main__':
test()
这个死锁的示例稍微有点复杂。具体可以理下。
二、可重入锁
为了支持在同一线程中多次请求同一资源,python提供了“可重入锁”:threading.RLock。RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。这里以例1为例,如果使用RLock代替Lock,则不会发生死锁:
import threading
import time
class MyThread(threading.Thread):
def run(self):
global num
time.sleep(1)
if mutex.acquire(1):
num = num+1
msg = self.name+' set num to '+str(num)
print msg
mutex.acquire()
mutex.release()
mutex.release()
num = 0
mutex = threading.RLock()
def test():
for i in range(5):
t = MyThread()
t.start()
if __name__ == '__main__':
test()
和上面那个例子的不同之处在于threading.Lock()换成了threading.RLock() 。
三、互斥锁
python threading模块有两类锁:互斥锁(threading.Lock )和可重用锁(threading.RLock)。两者的用法基本相同,具体如下:
lock = threading.Lock()
lock.acquire()
dosomething……
lock.release()
RLock的用法是将threading.Lock()修改为threading.RLock()。便于理解,先来段代码:
[root@361way lock]# cat lock1.py
#!/usr/bin/env python
# coding=utf-8
import threading # 导入threading模块
import time # 导入time模块
class mythread(threading.Thread): # 通过继承创建类
def __init__(self,threadname): # 初始化方法
# 调用父类的初始化方法
threading.Thread.__init__(self,name = threadname)
def run(self): # 重载run方法
global x # 使用global表明x为全局变量
for i in range(3):
x = x + 1
time.sleep(5) # 调用sleep函数,让线程休眠5秒
print x
tl = [] # 定义列表
for i in range(10):
t = mythread(str(i)) # 类实例化
tl.append(t) # 将类对象添加到列表中
x=0 # 将x赋值为0
for i in tl:
i.start()
这里执行的结果和想想的不同,结果如下:
[root@361way lock]# python lock1.py
30
30
30
30
30
30
30
30
30
30
为什么结果都是30呢?关键在于global 行和 time.sleep行。
1、由于x是一个全局变量,所以每次循环后 x 的值都是执行后的结果值;
2、由于该代码是多线程的操作,所以在sleep 等待的时候,之前已经执行完成的线程会在这等待,而后续的进程在等待的5秒这段时间也执行完成 ,等待print。同样由于global 的原理,x被重新斌值。所以打印出的结果全是30 ;
3、便于理解,可以尝试将sleep等注释,你再看下结果,就会发现有不同。
在实际应用中,如抓取程序等,也会出现类似于sleep等待的情况。在前后调用有顺序或打印有输出的时候,就会现并发竞争,造成结果或输出紊乱。这里就引入了锁的概念,上面的代码修改下,如下:
[root@361way lock]# cat lock2.py
#!/usr/bin/env python
# coding=utf-8
import threading # 导入threading模块
import time # 导入time模块
class mythread(threading.Thread): # 通过继承创建类
def __init__(self,threadname): # 初始化方法
threading.Thread.__init__(self,name = threadname)
def run(self): # 重载run方法
global x # 使用global表明x为全局变量
lock.acquire() # 调用lock的acquire方法
for i in range(3):
x = x + 1
time.sleep(5) # 调用sleep函数,让线程休眠5秒
print x
lock.release() # 调用lock的release方法
lock = threading.Lock() # 类实例化
tl = [] # 定义列表
for i in range(10):
t = mythread(str(i)) # 类实例化
tl.append(t) # 将类对象添加到列表中
x=0 # 将x赋值为0
for i in tl:
i.start() # 依次运行线程
执行的结果如下:
[root@361way lock]# python lock2.py
3
6
9
12
15
18
21
24
27
30
加锁的结果会造成阻塞,而且会造成开锁大。会根据顺序由并发的多线程按顺序输出,如果后面的线程执行过快,需要等待前面的进程结束后其才能结束 --- 写的貌似有点像队列的概念了 ,不过在加锁的很多场景下确实可以通过队列去解决。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何构建数据分析整体框架? 要让数据分析发挥其最大效能,建立一个清晰、完善的整体框架至关重要。今天,就让我们一同深入探讨 ...
2024-12-27AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26一个好的数据分析模型不仅能使分析具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。好的数据 ...
2024-12-26当下,AI 的发展堪称狂飙猛进。从 ChatGPT 横空出世到各种大语言模型(LLM)接连上线,似乎每个人的朋友圈都在讨论 AI 会不会“ ...
2024-12-26数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25在当今数字化变革的浪潮中,数据分析师这一职业正迎来前所未有的发展机遇。回想我自己初入数据分析行业时,那种既兴奋又略显谨慎 ...
2024-12-25在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19