异常检测算法–Isolation Forest
南大周志华老师在2010年提出一个异常检测算法Isolation Forest,在工业界很实用,算法效果好,时间效率高,能有效处理高维数据和海量数据,这里对这个算法进行简要总结。
iTree
提到森林,自然少不了树,毕竟森林都是由树构成的,看Isolation Forest(简称iForest)前,我们先来看看Isolation Tree(简称iTree)是怎么构成的,iTree是一种随机二叉树,每个节点要么有两个女儿,要么就是叶子节点,一个孩子都没有。给定一堆数据集D,这里D的所有属性都是连续型的变量,iTree的构成过程如下:
随机选择一个属性Attr;
随机选择该属性的一个值Value;
根据Attr对每条记录进行分类,把Attr小于Value的记录放在左女儿,把大于等于Value的记录放在右孩子;
然后递归的构造左女儿和右女儿,直到满足以下条件:
传入的数据集只有一条记录或者多条一样的记录;
树的高度达到了限定高度;
iTree构建好了后,就可以对数据进行预测啦,预测的过程就是把测试记录在iTree上走一下,看测试记录落在哪个叶子节点。iTree能有效检测异常的假设是:异常点一般都是非常稀有的,在iTree中会很快被划分到叶子节点,因此可以用叶子节点到根节点的路径h(x)长度来判断一条记录x是否是异常点;对于一个包含n条记录的数据集,其构造的树的高度最小值为log(n),最大值为n-1,论文提到说用log(n)和n-1归一化不能保证有界和不方便比较,用一个稍微复杂一点的归一化公式:
,
s(x,n)s(x,n)就是记录x在由n个样本的训练数据构成的iTree的异常指数,s(x,n)s(x,n)取值范围为[0,1],越接近1表示是异常点的可能性高,越接近0表示是正常点的可能性比较高,如果大部分的训练样本的s(x,n)都接近于0.5,说明整个数据集都没有明显的异常值。
随机选属性,随机选属性值,一棵树这么随便搞肯定是不靠谱,但是把多棵树结合起来就变强大了;
iForest
iTree搞明白了,我们现在来看看iForest是怎么构造的,给定一个包含n条记录的数据集D,如何构造一个iForest。iForest和Random Forest的方法有些类似,都是随机采样一一部分数据集去构造每一棵树,保证不同树之间的差异性,不过iForest与RF不同,采样的数据量PsiPsi不需要等于n,可以远远小于n,论文中提到采样大小超过256效果就提升不大了,明确越大还会造成计算时间的上的浪费,为什么不像其他算法一样,数据越多效果越好呢,可以看看下面这两个个图,
左边是元素数据,右边是采样了数据,蓝色是正常样本,红色是异常样本。可以看到,在采样之前,正常样本和异常样本出现重叠,因此很难分开,但我们采样之和,异常样本和正常样本可以明显的分开。
除了限制采样大小以外,还要给每棵iTree设置最大高度l=ceiling(logΨ2)l=ceiling(log2Ψ),这是因为异常数据记录都比较少,其路径长度也比较低,而我们也只需要把正常记录和异常记录区分开来,因此只需要关心低于平均高度的部分就好,这样算法效率更高,不过这样调整了后,后面可以看到计算h(x)h(x)需要一点点改进,先看iForest的伪代码:
IForest构造好后,对测试进行预测时,需要进行综合每棵树的结果,于是
E(h(x))E(h(x))表示记录x在每棵树的高度均值,另外h(x)计算需要改进,在生成叶节点时,算法记录了叶节点包含的记录数量,这时候要用这个数量SizeSize估计一下平均高度,h(x)的计算方法如下:
处理高维数据
在处理高维数据时,可以对算法进行改进,采样之后并不是把所有的属性都用上,而是用峰度系数Kurtosis挑选一些有价值的属性,再进行iTree的构造,这跟随机森林就更像了,随机选记录,再随机选属性。
只使用正常样本
这个算法本质上是一个无监督学习,不需要数据的类标,有时候异常数据太少了,少到我们只舍得拿这几个异常样本进行测试,不能进行训练,论文提到只用正常样本构建IForest也是可行的,效果有降低,但也还不错,并可以通过适当调整采样大小来提高效果。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16